Emerging glaucoma therapeutics

Authors

  • Ranjita Santra (Dhali) Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India
  • Shantanu Munshi Department of Clinical and Experimental Pharmacology, Calcutta School of Tropical Medicine, Kolkata, West Bengal, India

DOI:

https://doi.org/10.18203/2319-2003.ijbcp20150360

Keywords:

Glaucoma, Melatonin, Trabecular outflow pathway, Adenosine, Rho kinase, Norepinephrine, Matrix metalloproteinases

Abstract

The purpose of this review was to discuss the major recent advances in the field of ophthalmology, particularly as it pertains to glaucoma. We reviewed literature using MEDLINE and PubMed databases with the following search terms: “glaucoma,” “melatonin,” “trabecular outflow pathway,” “adenosine,” “rho kinase,” “norepinephrine,” and “matrix metalloproteinases.” We also reviewed pertinent references from articles found in this search. We looked at various studies concerning the clinical trials of glaucoma therapeutics, and therapeutic potential of putative ocular drug delivery systems in glaucoma. Challenges of assuring safety and efficacy of the newer medicines and techniques are pertinent in this regard. However, more research is needed to better elucidate the mechanism of various investigational drug products and drug delivery devices in glaucoma.

References

Grant WM. Clinical tonography. Trans Am Acad Ophthalmol Otolaryngol. 1951;55:774-81.

Stamer WD, Acott TS. Current understanding of conventional outflow dysfunction in glaucoma. Curr Opin Ophthalmol. 2012;23(2):135-43.

Jean-Louis G, Zizi F, Lazzaro DR, Wolintz AH. Circadian rhythm dysfunction in glaucoma: a hypothesis. J Circadian Rhythms. 2008;6:1.

Mojon DS, Hess CW, Goldblum D, Boehnke M, Koerner F, Gugger M, et al. Normal-tension glaucoma is associated with sleep apnea syndrome. Ophthalmologica. 2002;216(3):180-4.

Mojon DS, Hess CW, Goldblum D, Böhnke M, Körner F, Mathis J. Primary open-angle glaucoma is associated with sleep apnea syndrome. Ophthalmologica. 2000;214(2):115-8.

Mabuchi F, Yoshimura K, Kashiwagi K, Shioe K, Yamagata Z, Kanba S, et al. High prevalence of anxiety and depression in patients with primary open-angle glaucoma. J Glaucoma. 2008;17(7):552-7.

Zhong Y, Yang Z, Huang WC, Luo X. Adenosine, adenosine receptors and glaucoma: an updated overview. Biochim Biophys Acta. 2013;1830(4):2882-90.

deLong MA, Yingling J, Lin CW, Sherman B, Sturdivant J, Heintzelman G, et al. Discovery and SAR of a class of ocularly-active compounds displaying a dual mechanism of activity for the treatment of glaucoma. ARVO Meeting Abstracts. Invest Ophthalmol Vis Sci 2012;53 E-Abstract:3867.

Wang RF, Serle JB, Kopczynski C. Effect of 0.04% AR-13324 on aqueous humor dynamics in normotensive monkey eyes. ARVO Meeting Abstracts. Invest Ophthalmol Vis Sci 2012;53:1994.

Quigley HA, Broman AT. The number of people with glaucoma worldwide in 2010 and 2020. Br J Ophthalmol. 2006;90(3):262-7.

Sommer A. Intraocular pressure and glaucoma. Am J Ophthalmol. 1989;107:186-8.

IMS Prescription Database, 2012. Available at: http://www.imshealth.com. Accessed 20 October 2014.

Serle JB, Wang RF, Peterson WM, Plourde R, Yerxa BR. Effect of 5-MCA-NAT, a putative melatonin MT3 receptor agonist, on intraocular pressure in glaucomatous monkey eyes. J Glaucoma. 2004;13(5):385-8.

Belforte NA, Moreno MC, de Zavalía N, Sande PH, Chianelli MS, Keller Sarmiento MI, et al. Melatonin: a novel neuroprotectant for the treatment of glaucoma. J Pineal Res. 2010;48(4):353-64.

Coleman AL, Miglior S. Risk factors for glaucoma onset and progression. Surv Ophthalmol. 2008;53 Suppl1:S3-10.

Jonas M, Garfinkel D, Zisapel N, Laudon M, Grossman E. Impaired nocturnal melatonin secretion in non-dipper hypertensive patients. Blood Press. 2003;12(1):19-24.

Scheer FA, Van Montfrans GA, van Someren EJ, Mairuhu G, Buijs RM. Daily nighttime melatonin reduces blood pressure in male patients with essential hypertension. Hypertension. 2004;43(2):192-7.

Reiter RJ. Pineal function during aging: attenuation of the melatonin rhythm and its neurobiological consequences. Acta Neurobiol Exp (Wars). 1994;54 Suppl:31-9.

Thieme H, Nuskovski M, Nass JU, Pleyer U, Strauss O, Wiederholt M. Mediation of calcium-independent contraction in trabecular meshwork through protein kinase C and rho-A. Invest Ophthalmol Vis Sci. 2000;41(13):4240-6.

Rao PV, Deng PF, Kumar J, Epstein DL. Modulation of aqueous humor outflow facility by the Rho kinase-specific inhibitor Y-27632. Invest Ophthalmol Vis Sci. 2001;42(5):1029-37.

Honjo M, Tanihara H, Inatani M, Kido N, Sawamura T, Yue BY, et al. Effects of rho-associated protein kinase inhibitor Y-27632 on intraocular pressure and outflow facility. Invest Ophthalmol Vis Sci. 2001;42(1):137-44.

Novack GD. Rho kinase inhibitors for the treatment of glaucoma. Drugs Future 2013;38:107-13.

Levy B, Lewis R, Kopczynski C, Van Haarlem T, Novack G. PG286-CS201 Study Group. Ocular hypotensive efficacy and safety of a fixed dose combination of AR-12286 (a Rho kinase inhibitor) and travoprost. ARVO Meeting Abstracts. Invest Ophthalmol Vis Sci. 2013;54 E-Abstract:752.

Tanihara H, Inoue T, Yamamoto T, Kuwayama Y, Abe H, Araie M, K-Clinical Study Group. Phase 2 randomized clinical study of a rho kinase inhibitor, K-115, in primary open-angle glaucoma and ocular hypertension. Am J Ophthalmol. 2013;156(4):731-6.

Myers J, Sall K, DuBiner H, Brickman C, Slomowitz N, McVicar W, et al. A randomized, phase II study of trabodenoson (INO-8875) in adults with ocular hypertension (OHT) or primary open-angle glaucoma (POAG). ARVO Meeting Abstracts. Invest Ophthalmol Vis Sci. 2013;54 E-Abstract:2621.

Weiss M, Levy B, Kopczynski C, van Haarlem T, Novack G. AR-13324-CS201 Study Group. Evaluation of AR-13324, a novel dual mechanism agent, in lowering of IOP in glaucoma and ocular hypertension. ARVO Meeting Abstracts. Invest Ophthalmol Vis Sci. 2013;54 E-Abstract:754.

Rossi GC, Pasinetti GM, Scudeller L, Radaelli R, Bianchi PE. Do adherence rates and glaucomatous visual field progression correlate? Eur J Ophthalmol. 2011;21(4):410-4.

Chang EE, Goldberg JL. Glaucoma 2.0: neuroprotection, neuroregeneration, neuroenhancement. Ophthalmology. 2012;119(5):979-86.

Mansouri K, Liu JH, Weinreb RN, Tafreshi A, Medeiros FA. Analysis of continuous 24-h intraocular pressure patterns in glaucoma. Invest Ophthalmol Vis Sci. 2012;53(13):8050-6.

Shih GC, Calkins DJ. Secondary neuroprotective effects of hypotensive drugs and potential mechanisms of action. Expert Rev Ophthalmol. 2012;7(2):161-175.

Lambert WS, Ruiz L, Crish SD, Wheeler LA, Calkins DJ. Brimonidine prevents axonal and somatic degeneration of retinal ganglion cell neurons. Mol Neurodegener. 2011;6(1):4.

Saylor M, McLoon LK, Harrison AR, Lee MS. Experimental and clinical evidence for brimonidine as an optic nerve and retinal neuroprotective agent: an evidence-based review. Arch Ophthalmol. 2009;127(4):402-6.

Gao H, Qiao X, Cantor LB, WuDunn D. Up-regulation of brain-derived neurotrophic factor expression by brimonidine in rat retinal ganglion cells. Arch Ophthalmol. 2002;120(6):797-803.

Krupin T, Liebmann JM, Greenfield DS, Ritch R, Gardiner S. Low-pressure glaucoma study group. A randomized trial of brimonidine versus timolol in preserving visual function: results from the low-pressure glaucoma treatment study. Am J Ophthalmol. 2011;151(4):671-81.

Boltz A, Schmidl D, Weigert G, Lasta M, Pemp B, Resch H, et al. Effect of latanoprost on choroidal blood flow regulation in healthy subjects. Invest Ophthalmol Vis Sci. 2011;52(7):4410-5.

Kniep EM, Roehlecke C, Ozkucur N, Steinberg A, Reber F, Knels L, et al. Inhibition of apoptosis and reduction of intracellular pH decrease in retinal neural cell cultures by a blocker of carbonic anhydrase. Invest Ophthalmol Vis Sci. 2006;47(3):1185-92.

Osborne NN. Recent clinical findings with memantine should not mean that the idea of neuroprotection in glaucoma is abandoned. Acta Ophthalmol. 2009;87(4):450-4.

Beidoe G, Mousa SA. Current primary open-angle glaucoma treatments and future directions. Clin Ophthalmol. 2012;6:1699-707.

Roh M, Zhang Y, Murakami Y, Thanos A, Lee SC, Vavvas DG, et al. Etanercept, a widely used inhibitor of tumor necrosis factor-a (TNF-a), prevents retinal ganglion cell loss in a rat model of glaucoma. PLoS One. 2012;7(7):e40065.

Guo L, Salt TE, Luong V, Wood N, Cheung W, Maass A, et al. Targeting amyloid-beta in glaucoma treatment. Proc Natl Acad Sci U S A. 2007;104(33):13444-9.

Downloads

Published

2017-01-19

How to Cite

Santra (Dhali), R., & Munshi, S. (2017). Emerging glaucoma therapeutics. International Journal of Basic & Clinical Pharmacology, 4(4), 606–612. https://doi.org/10.18203/2319-2003.ijbcp20150360

Issue

Section

Review Articles