Emerging insights into the use of dexamethasone for high-altitude illness: bridging basic pharmacology and clinical practice

Authors

  • Snehashis Singha Department of Pharmacology and Therapeutics, King George’s Medical University (KGMU), Lucknow, Uttar Pradesh, India
  • Rajasree Majumder Department of Microbiology, King George’s Medical University (KGMU), Lucknow, Uttar Pradesh, India

DOI:

https://doi.org/10.18203/2319-2003.ijbcp20254169

Keywords:

Dexamethasone, Acute mountain sickness, High-altitude cerebral edema, High-Altitude Pulmonary Edema, Glucocorticoid receptor, Hypoxia-inducible factor

Abstract

Acute mountain sickness (AMS) and its severe forms high-altitude cerebral edema (HACE) and high-altitude pulmonary edema (HAPE) result from hypobaric hypoxia that triggers vascular leak, inflammation, and metabolic stress. Among preventive agents, acetazolamide remains conventional, but dexamethasone has emerged as the most potent pharmacologic safeguard due to its rapid and multi-level protective mechanisms. Acting through both genomic and non-genomic pathways, dexamethasone suppresses NF-κB and HIF-1α signalling, reinforces endothelial barrier integrity, reduces cytokine-driven edema, and enhances mitochondrial energy efficiency, collectively restoring vascular and metabolic stability under hypoxic stress. Evidence from randomized trials and meta-analyses demonstrates a 60-70% reduction in AMS incidence and accelerated recovery in HACE and HAPE with dexamethasone therapy. Multi-omics analyses further reveal that the drug reprograms over a thousand genes involved in immune, oxidative, and metabolic regulation, underscoring its system-wide impact. Recent advances including inhaled, transdermal, and depot formulations, as well as pharmacogenomic-guided dosing are transforming dexamethasone from a symptom-relief drug to a precision altitude pharmacology agent. Its unmatched combination of anti-inflammatory, anti-edematous, and metabolic-stabilizing actions firmly establishes dexamethasone as the most comprehensive and mechanistically validated therapy for both prevention and treatment of high-altitude illness.

Metrics

Metrics Loading ...

References

DiPasquale DM, Strangman GE, Harris NS, Muza SR. Acute Mountain Sickness Symptoms Depend on Normobaric versus Hypobaric Hypoxia. Biomed Res Int. 2016;2016:1-9. DOI: https://doi.org/10.1155/2016/6245609

Pham K. PK and HEC. Hypoxiaand inflammation: insights from high-altitudephysiology. Front Physiol. 2021;12:676782. DOI: https://doi.org/10.3389/fphys.2021.676782

Bartsch P SER. Acute high-altitude illnesses. N Engl J Med. 2013;369(17):1666-7. DOI: https://doi.org/10.1056/NEJMc1309747

Honigman B, Theis MK, Koziol-McLain J, Roach R, Yip R, Houston C, et al. Acute Mountain Sickness in a General Tourist Population at Moderate Altitudes. Ann Intern Med. 1993;118(8):587-92. DOI: https://doi.org/10.7326/0003-4819-118-8-199304150-00003

Bailey DM, Bärtsch P, Knauth M, Baumgartner RW. Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cellular and Molecular Life Sciences. 2009;66(22):3583-94.

Wilson MH, Davagnanam I, Holland G, Dattani RS, Tamm A, Hirani SP, et al. Cerebral venous system and anatomical predisposition to high‐altitude headache. Ann Neurol. 2013;73(3):381-9. DOI: https://doi.org/10.1002/ana.23796

Chalaka S, Ingbar DH, Sharma R, Zhau Z, Wendt CH. Na + -K + -ATPase gene regulation by glucocorticoids in a fetal lung epithelial cell line. Am J Physiol Lung Cellular Molecular Physiol. 1999;277(1):L197-203. DOI: https://doi.org/10.1152/ajplung.1999.277.1.L197

Pham K. FSPKPNOB, Heinrich EC. Inflammatory geneexpression during acute high-altitudeexposure. J Physiol. 2022;600:4169-86. DOI: https://doi.org/10.1113/JP282772

Imtiyaz HZ, Simon MC. Hypoxia-Inducible Factors as Essential Regulators of Inflammation. Curr Top Microbiol Immunol. 2010;345:105-20. DOI: https://doi.org/10.1007/82_2010_74

Suresh MV, Balijepalli S, Zhang B, Singh VV, Swamy S, Panicker S, et al. Hypoxia-Inducible Factor (HIF)-1α Promotes Inflammation and Injury Following Aspiration-Induced Lung Injury in Mice. Shock. 2019;52(6):612-21. DOI: https://doi.org/10.1097/SHK.0000000000001312

Tang YY, Wang DC, Wang YQ, Huang AF, Xu WD. Emerging role of hypoxia-inducible factor-1α in inflammatory autoimmune diseases: A comprehensive review. Front Immunol. 2023;13:1073971. DOI: https://doi.org/10.3389/fimmu.2022.1073971

Ding H, Liu Q, Hua M, Ding M, Du H, Zhang W, et al. Polymorphisms of Hypoxia-Related Genes in Subjects Susceptible to Acute Mountain Sickness. Respiration. 2011;81(3):236-41. DOI: https://doi.org/10.1159/000322850

Dai W, Qiao X, Fang Y, Guo R, Bai P, Liu S, et al. Epigenetics-targeted drugs: current paradigms and future challenges. Signal Transduct Target Ther. 2024;9(1):332. DOI: https://doi.org/10.1038/s41392-024-02039-0

Hackett PH, Roach RC. High-altitude illness. N Engl J Med. 2001;345(2):107-14. DOI: https://doi.org/10.1056/NEJM200107123450206

Roach RC, Hackett PH, Oelz O, Bärtsch P, Luks AM, MacInnis MJ, et al. The 2018 Lake Louise Acute Mountain Sickness Score. High Alt Med Biol. 2018;19(1):4-6. DOI: https://doi.org/10.1089/ham.2017.0164

Ellsworth AJ, Larson EB, Strickland D. A randomized trial of dexamethasone and acetazolamide for acute mountain sickness prophylaxis. Am J Med. 1987;83(6):1024-30. DOI: https://doi.org/10.1016/0002-9343(87)90937-5

Burtscher J, Gatterer H, Beidleman BA, Burtscher M. Dexamethasone for prevention of AMS, HACE, and HAPE and for limiting impairment of performance after rapid ascent to high altitude: a narrative review. Mil Med Res. 2025;12(1):48. DOI: https://doi.org/10.1186/s40779-025-00634-y

Zheng CR, Chen GZ, Yu J, Qin J, Song P, Bian SZ, et al. Inhaled Budesonide and Oral Dexamethasone Prevent Acute Mountain Sickness. Am J Med. 2014;127(10):1001-9. DOI: https://doi.org/10.1016/j.amjmed.2014.04.012

Dubashynskaya NV, Bokatyi AN, Skorik YA. Dexamethasone Conjugates: Synthetic Approaches and Medical Prospects. Biomedicines. 2021;9(4):341. DOI: https://doi.org/10.3390/biomedicines9040341

Cevc G, Blume G. Hydrocortisone and dexamethasone in very deformable drug carriers have increased biological potency, prolonged effect, and reduced therapeutic dosage. Biochimica et Biophysica Acta (BBA)-Biomembranes. 2004;1663(1-2):61-73. DOI: https://doi.org/10.1016/j.bbamem.2004.01.006

Weikum ER, Knuesel MT, Ortlund EA, Yamamoto KR. Glucocorticoid receptor control of transcription: precision and plasticity via allostery. Nat Rev Mol Cell Biol. 2017;18(3):159-74. DOI: https://doi.org/10.1038/nrm.2016.152

De Bosscher K, Beck IM, Dejager L, Bougarne N, Gaigneaux A, Chateauvieux S, et al. Selective modulation of the glucocorticoid receptor can distinguish between transrepression of NF-κB and AP-1. Cellular Molecular Life Sci. 2014;71(1):143-63. DOI: https://doi.org/10.1007/s00018-013-1367-4

Ratman D, Vanden Berghe W, Dejager L, Libert C, Tavernier J, Beck IM, et al. How glucocorticoid receptors modulate the activity of other transcription factors: A scope beyond tethering. Mol Cell Endocrinol. 2013;380(1-2):41-54. DOI: https://doi.org/10.1016/j.mce.2012.12.014

Panettieri RA, Schaafsma D, Amrani Y, Koziol-White C, Ostrom R, Tliba O. Non-genomic Effects of Glucocorticoids: An Updated View. Trends Pharmacol Sci. 2019;40(1):38-49. DOI: https://doi.org/10.1016/j.tips.2018.11.002

Lockett J, Inder WJ, Clifton VL. The Glucocorticoid Receptor: Isoforms, Functions, and Contribution to Glucocorticoid Sensitivity. Endocr Rev. 2024;45(4):593-624. DOI: https://doi.org/10.1210/endrev/bnae008

Frank F, Ortlund EA, Liu X. Structural insights into glucocorticoid receptor function. Biochem Soc Trans. 2021;49(5):2333-43. DOI: https://doi.org/10.1042/BST20210419

Avenant C, Kotitschke A, Hapgood JP. Glucocorticoid Receptor Phosphorylation Modulates Transcription Efficacy through GRIP-1 Recruitment. Biochemistry. 2010;49(5):972-85. DOI: https://doi.org/10.1021/bi901956s

Kumar R, Chanana N, Sharma K, Palmo T, Lee MH, Mishra A, et al. Dexamethasone prophylaxis protects from acute high-altitude illness by modifying the peripheral blood mononuclear cell inflammatory transcriptome. Biosci Rep. 2023;43:11.

Verma M, Kipari TMJ, Zhang Z, Man TY, Forster T, Homer NZM, et al. 11β-hydroxysteroid dehydrogenase-1 deficiency alters brain energy metabolism in acute systemic inflammation. Brain Behav Immun. 2018;69:223-34. DOI: https://doi.org/10.1016/j.bbi.2017.11.015

Suzuki S, Koyama K, Darnel A, Ishibashi H, Kobayashi S, Kubo H, et al. Dexamethasone Upregulates 11β-Hydroxysteroid Dehydrogenase Type 2 in BEAS-2B Cells. Am J Respir Crit Care Med. 2003;167(9):1244-9. DOI: https://doi.org/10.1164/rccm.200210-1139OC

Chimote AA, Alshwimi AO, Chirra M, Gawali VS, Powers-Fletcher M V., Hudock KM, et al. Immune and ionic mechanisms mediating the effect of dexamethasone in severe COVID-19. Front Immunol. 2023;14:1143350. DOI: https://doi.org/10.3389/fimmu.2023.1143350

Rondovic G, Djordjevic D, Udovicic I, Stanojevic I, Zeba S, Abazovic T, et al. From Cytokine Storm to Cytokine Breeze: Did Lessons Learned from Immunopathogenesis Improve Immunomodulatory Treatment of Moderate-to-Severe COVID-19 Biomedicines. 2022;10(10):2620. DOI: https://doi.org/10.3390/biomedicines10102620

Colonna M, Butovsky O. Microglia function in the central nervous system during health and neurodegeneration. Annu Rev Immunol. 2017;35:441–68. DOI: https://doi.org/10.1146/annurev-immunol-051116-052358

Norman MU, James WG, Hickey MJ. Differential roles of ICAM-1 and VCAM-1 in leukocyte-endothelial cell interactions in skin and brain of MRL/ fas lpr mice. J Leukoc Biol. 2008;84(1):68-76. DOI: https://doi.org/10.1189/jlb.1107796

Bailey DM, Bärtsch P, Knauth M, Baumgartner RW. Emerging concepts in acute mountain sickness and high-altitude cerebral edema: from the molecular to the morphological. Cellular Molecular Life Sci. 2009;66(22):3583-94. DOI: https://doi.org/10.1007/s00018-009-0145-9

Afzal S, Abdul Manap AS, Attiq A, Albokhadaim I, Kandeel M, Alhojaily SM. From imbalance to impairment: the central role of reactive oxygen species in oxidative stress-induced disorders and therapeutic exploration. Front Pharmacol. 2023;14:1269581. DOI: https://doi.org/10.3389/fphar.2023.1269581

Barquin N, Ciccolella DE, Ridge KM, Sznajder JI. Dexamethasone upregulates the Na-K-ATPase in rat alveolar epithelial cells. Am J Physiol Lung Cellular Molecular Physiol. 1997;273(4):L825-30. DOI: https://doi.org/10.1152/ajplung.1997.273.4.L825

Swenson ER. High-Altitude Pulmonary Edema. In: Textbook of Pulmonary Vascular Disease. Boston, MA: Springer US. 2011;871-88. DOI: https://doi.org/10.1007/978-0-387-87429-6_61

Price LC, Montani D, Tcherakian C, Dorfmüller P, Souza R, Gambaryan N, et al. Dexamethasone reverses monocrotaline-induced pulmonary arterial hypertension in rats. Eur Respiratory J. 2011;37(4):813-22. DOI: https://doi.org/10.1183/09031936.00028310

Medhi G, Lachungpa T, Saini J. Neuroimaging features of fatal high-altitude cerebral edema. Indian J Radiol Imaging. 2018;28(04):401-5. DOI: https://doi.org/10.4103/ijri.IJRI_296_18

Jia WY, Zhang JJ. Effects of glucocorticoids on leukocytes: Genomic and non-genomic mechanisms. World J Clin Cases. 2022;10(21):7187-94. DOI: https://doi.org/10.12998/wjcc.v10.i21.7187

Banuelos J, Cao Y, Shin SC, Lu NZ. Immunopathology alters Th17 cell glucocorticoid sensitivity. Allergy. 2017;72(3):331-41. DOI: https://doi.org/10.1111/all.13051

Kumar R, Chanana N, Sharma K, Palmo T, Lee MH, Mishra A, et al. Dexamethasone prophylaxis protects from acute high-altitude illness by modifying the peripheral blood mononuclear cell inflammatory transcriptome. Biosci Rep. 2023;43:11.

Eiers AK, Vettorazzi S, Tuckermann JP. Journey through discovery of 75 years glucocorticoids: evolution of our knowledge of glucocorticoid receptor mechanisms in rheumatic diseases. Ann Rheum Dis. 2024;83(12):1603-13. DOI: https://doi.org/10.1136/ard-2023-225371

Patil RH, Naveen Kumar M, Kiran Kumar KM, Nagesh R, Kavya K, Babu RL, et al. Dexamethasone inhibits inflammatory response via down regulation of AP-1 transcription factor in human lung epithelial cells. Gene. 2018;645:85-94. DOI: https://doi.org/10.1016/j.gene.2017.12.024

Guo Q, Jin Y, Chen X, Ye X, Shen X, Lin M, et al. NF-κB in biology and targeted therapy: new insights and translational implications. Signal Transduct Target Ther. 2024;9(1):53. DOI: https://doi.org/10.1038/s41392-024-01757-9

Semenza GL. HIF-1 mediates metabolic responses to intratumoral hypoxia and oncogenic mutations. J Clin Invest. 2013;123(9):3664-71. DOI: https://doi.org/10.1172/JCI67230

Harvey BJ. Molecular mechanisms of dexamethasone actions in COVID-19: Ion channels and airway surface liquid dynamics. Steroids. 2024;202:109348. DOI: https://doi.org/10.1016/j.steroids.2023.109348

Pascual-Ahuir A, Manzanares-Estreder S, Proft M. Pro‐ and Antioxidant Functions of the Peroxisome‐Mitochondria Connection and Its Impact on Aging and Disease. Oxid Med Cell Longev. 2017;2017:1. DOI: https://doi.org/10.1155/2017/9860841

Luo M, Yi Y, Huang S, Dai S, Xie L, Liu K, et al. Gestational dexamethasone exposure impacts hippocampal excitatory synaptic transmission and learning and memory function with transgenerational effects. Acta Pharm Sin B. 2023;13(9):3708-27. DOI: https://doi.org/10.1016/j.apsb.2023.05.013

Liu C, Croft QPP, Kalidhar S, Brooks JT, Herigstad M, Smith TG, et al. Dexamethasone mimics aspects of physiological acclimatization to 8 hours of hypoxia but suppresses plasma erythropoietin. J Appl Physiol. 2013;114(7):948-56. DOI: https://doi.org/10.1152/japplphysiol.01414.2012

Janaszak-Jasiecka A, Płoska A, Wierońska JM, Dobrucki LW, Kalinowski L. Endothelial dysfunction due to eNOS uncoupling: molecular mechanisms as potential therapeutic targets. Cell Mol Biol Lett. 2023;28(1):21. DOI: https://doi.org/10.1186/s11658-023-00423-2

Jing L, Wu N, He L, Shao J, Ma H. Establishment of an experimental rat model of high altitude cerebral edema by hypobaric hypoxia combined with temperature fluctuation. Brain Res Bull. 2020;165:253-62. DOI: https://doi.org/10.1016/j.brainresbull.2020.10.017

Rivera-Ch M, Huicho L, Bouchet P, Richalet JP, León-Velarde F. Effect of acetazolamide on ventilatory response in subjects with chronic mountain sickness. Respir Physiol Neurobiol. 2008;162(3):184-9. DOI: https://doi.org/10.1016/j.resp.2008.06.010

Kumar R, Chanana N, Sharma K, Palmo T, Lee MH, Mishra A, et al. Dexamethasone prophylaxis protects from acute high-altitude illness by modifying the peripheral blood mononuclear cell inflammatory transcriptome. Biosci Rep. 2023;43:11. DOI: https://doi.org/10.1042/BSR20231561

Hackett PH, Roach RC, Wood RA, Foutch RG, Meehan RT, Rennie D, et al. Dexamethasone for prevention and treatment of acute mountain sickness. Aviat Space Environ Med. 1988;59(10):950-4.

Liu Q, ZS CJ. Dexamethasone prophylaxis in rapid ascent among Chinese army personnel. High Alt Med Biol. 2012;13(3):193-9.

Bailey DM, EKAJPE. Cognitive performance preservation by dexamethasone in high-altitude expeditions. Eur J Appl Physiol. 2016;116(9):1735-45.

Deshpande R, SPCT. Operational prophylaxis protocol for Indian Armed Forces personnel at high altitude. Med J Armed Forces India. 2017;73(4):355-62.

Snehashis Singha, Rajasree Majumder, High-Altitude Illness: A Comprehensive Review of Classification, Pathophysiology, And Clinical Management. J Pharm Sci. 2025;1(10):193-205.

Downloads

Published

2025-12-23

How to Cite

Singha, S., & Majumder, R. (2025). Emerging insights into the use of dexamethasone for high-altitude illness: bridging basic pharmacology and clinical practice. International Journal of Basic & Clinical Pharmacology, 15(1), 176–189. https://doi.org/10.18203/2319-2003.ijbcp20254169

Issue

Section

Review Articles