A review on core shell nanoparticles: classes, synthesis, characterization of core shell nanoparticles

Authors

  • Rudroju Anusha Department of Pharmaceutics, Pulla Reddy Institute of Pharmacy, Hyderabad, Telangana, India
  • Anguru Yaminikrishnaveni Department of Pharmaceutics, Pulla Reddy Institute of Pharmacy, Hyderabad, Telangana, India
  • Eragari Nikhitha Department of Pharmaceutics, Pulla Reddy Institute of Pharmacy, Hyderabad, Telangana, India
  • Bheemari Harshitha Department of Pharmaceutics, Pulla Reddy Institute of Pharmacy, Hyderabad, Telangana, India
  • Algola Vamshi Krishna Department of Pharmaceutics, Pulla Reddy Institute of Pharmacy, Hyderabad, Telangana, India
  • Dudekula Baji Baba Department of Pharmaceutics, Pulla Reddy Institute of Pharmacy, Hyderabad, Telangana, India

DOI:

https://doi.org/10.18203/2319-2003.ijbcp20251848

Keywords:

Biomedical research, Biosensors, Nanoparticles, Targetted gene delivery

Abstract

Because of their remarkable capabilities in bioimaging, targeted medication and gene delivery, sensors, and other fields, nanoparticles have many fascinating uses in a variety of fields, and the biomedical field is no exception. Due to a number of benefits over simple nanoparticles, it has been determined that the core/shell class of nanoparticles holds the most promise for many medicinal applications. The evolution of biomedical research based on core/shell nanoparticles during the last 20 years or so is highlighted in this study. Five main categories-bioimaging, biosensor, targeted medication delivery, DNA/RNA interaction, and targeted gene delivery-are used to categorize applications of various core/shell nanoparticle kinds.

Metrics

Metrics Loading ...

References

Hasan S. A review on nanoparticles: their synthesis and types. Res J Recent Sci. 2015;2277:2502.

Bhatt I, Tripathi BN. Interaction of engineered nanoparticles with various components of the environment and possible strategies for their risk assessment. Chemosphere. 2011;82(3):308-17. DOI: https://doi.org/10.1016/j.chemosphere.2010.10.011

Cho EJ, Holback H, Liu KC, Abouelmagd SA, Park J, Yeo Y. Nanoparticle characterization: state of the art, challenges, and emerging technologies. Mol Pharma. 2013;10(6):2093-110. DOI: https://doi.org/10.1021/mp300697h

Machado S, Pacheco JG, Nouws HP, Albergaria JT, Delerue-Matos C. Characterization of green zero-valent iron nanoparticles produced with tree leaf extracts. Sci Env. 2015;533:76-81. DOI: https://doi.org/10.1016/j.scitotenv.2015.06.091

Kumari S, Sarkar L. A review on nanoparticles: Structure, classification, synthesis & applications. J Sci Res. 2021;65(8):42-6.

Kumari S, Sarkar L. A review on nanoparticles: Structure, classification, synthesis & applications. J Sci Res. 2021;65(8):42-6. DOI: https://doi.org/10.37398/JSR.2021.650809

Mekuye B, Abera B. Nanomaterials: An overview of synthesis, classification, characterization, and applications. Nano Select. 2023;4(8):486-501. DOI: https://doi.org/10.1002/nano.202300038

He D, Wang S, Lei L, Hou Z, Shang P, He X, Nie H. Core–shell particles for controllable release of drug. Chem Engin Sci. 2015;125:108-20. DOI: https://doi.org/10.1016/j.ces.2014.08.007

Mahdavi Z, Rezvani H, Moraveji MK. Core–shell nanoparticles used in drug delivery-microfluidics: A review. RSC advances. 2020;10(31):18280-95. DOI: https://doi.org/10.1039/D0RA01032D

Chatterjee K, Sarkar S, Rao KJ, Paria S. Core/shell nanoparticles in biomedical applications. Adv Coll Int Sci. 2014;209:8-39. DOI: https://doi.org/10.1016/j.cis.2013.12.008

Bian B, He J, Du J, Xia W, Zhang J, Liu JP, et al. Growth mechanism and magnetic properties of monodisperse L1 0-Co (Fe) Pt@ C core–shell nanoparticles by one-step solid-phase synthesis. Nanoscale. 2015;7(3):975-80. DOI: https://doi.org/10.1039/C4NR04986A

Chaudhuri TK, Tiwari D. Earth-abundant non-toxic Cu2ZnSnS4 thin films by direct liquid coating from metal–thiourea precursor solution. Solar Energy Materials Solar Cells. 201;101:46-50. DOI: https://doi.org/10.1016/j.solmat.2012.02.012

Óvári L, Berkó A, Balázs N, Majzik Z, Kiss J. Formation of Rh− Au core− shell nanoparticles on TiO2 (110) surface studied by STM and LEIS. Langmuir. 2010;26(3):2167-75. DOI: https://doi.org/10.1021/la902674u

Berkó A, Klivényi G, Solymosi F. Fabrication of Ir/TiO2 (110) planar catalysts with tailored particle size and distribution. J Catalysis. 1999;182(2):511-4. DOI: https://doi.org/10.1006/jcat.1998.2345

Mero O, Sougrati MT, Jumas JC, Margel S. Engineered Magnetic Core–shell SiO2/Fe Microspheres and “medusa-like” Microspheres of SiO2/iron Oxide/carbon Nanofibers or Nanotubes. Langmuir. 2014;30(32):9850-8. DOI: https://doi.org/10.1021/la502142m

Nan C, Lin Z, Liao H, Song MK, Li Y, Cairns EJ. Durable carbon-coated Li2S core–shell spheres for high performance lithium/sulfur cells. J American Chem Soc. 2014;136(12):4659-63. DOI: https://doi.org/10.1021/ja412943h

Cao L, Jiang H, Song H, Li Z, Miao G. Thermal CVD synthesis and photoluminescence of SiC/SiO2 core–shell structure nanoparticles. J All Comp. 2010;489(2):562-5. DOI: https://doi.org/10.1016/j.jallcom.2009.09.109

Cui P, Li FS, Yang Y, Jiang W, Liu HY. Design of typical device for powder surface modification of micron and nano-sized powder by mechano-mixed method. China Powder Sci. Technol. 2006;1:17-9.

Heidarpour A, Karimzadeh F, Enayati MH. In situ synthesis mechanism of Al2O3–Mo nanocomposite by ball milling process. J Alloys Compounds. 2009;477(1-2):692-5. DOI: https://doi.org/10.1016/j.jallcom.2008.10.112

He W, Lv Y, Zhao Y, Xu C, Jin Z, Qin C, et al. Core–shell structured gel-nanocarriers for sustained drug release and enhanced antitumor effect. International Journal of Pharmaceutics. 2015;484(1-2):163-71. DOI: https://doi.org/10.1016/j.ijpharm.2015.02.053

Chen H, Zhang L, Li M, Xie G. Synthesis of core–shell micro/nanoparticles and their tribological application: a review. Materials. 2020;13(20):4590. DOI: https://doi.org/10.3390/ma13204590

Ghosh Chaudhuri R, Paria S. Core/shell nanoparticles: classes, properties, synthesis mechanisms, characterization, and applications. Chemical Rev. 2012;112(4):2373-433. DOI: https://doi.org/10.1021/cr100449n

Downloads

Published

2025-06-24

How to Cite

Anusha, R., Yaminikrishnaveni, A., Nikhitha, E., Harshitha, B., Krishna, A. V., & Baba, D. B. (2025). A review on core shell nanoparticles: classes, synthesis, characterization of core shell nanoparticles. International Journal of Basic & Clinical Pharmacology, 14(4), 614–622. https://doi.org/10.18203/2319-2003.ijbcp20251848

Issue

Section

Review Articles