Is intervening inflammatory pathways a way to treat type 2-diabetes
DOI:
https://doi.org/10.18203/2319-2003.ijbcp20251074Keywords:
Cardiovascular disease, Hydroxychloroquine, Inflammation, Insulin resistance, Type 2 diabetes mellitusAbstract
Over the past few decades, the prevalence of type 2 diabetes (T2D) has rapidly increased. Cardiovascular kidney-metabolic (CKM) syndrome commonly arises from excessive or defective adipose tissue or combination of both. Proinflammatory mediators secreted by dysfunctional adipose tissue, especially visceral adipose tissue damage kidney, heart and artery tissues. Excessive storage of fatty acids disrupts the endocrine functions of adipose tissue, resulting in ectopic fat accumulation that induces lipotoxicity, thereby promoting low-grade inflammation and insulin resistance (IR) in the liver. Systemic inflammation and IR are exacerbated by the onset of metabolic dysfunction-associated steatotic liver disease, formerly known as non-alcoholic fatty liver disease (NAFLD). It is well established that low grade inflammation plays an important role in T2D and its associated microvascular complications like nephropathy, neuropathy, retinopathy and macrovascular complications like atherosclerosis. Accelerated atherosclerosis predisposes to cardiovascular diseases, which is the leading cause of mortality in these patients. Till date, various anti-inflammatory drugs have been tried in the setting of chronic disorders such as T2D and CVD (cardiovascular diseases). But too selective targeting may not have produced the desired outcomes. Multiple inflammatory pathways contribute to the pathogenesis of CVD and T2D, hydroxychloroquine (HCQ), a broad anti-inflammatory agent, demonstrates beneficial effects on glucose and lipid metabolism and is the only DCGI approved anti-inflammatory drug for T2D. Due to pleotropic benefits, HCQ has the potential of reducing prediabetes for diabetics, has antidiabetic properties and also reduces complications of diabetes, most importantly, CVD associated with T2D.
Metrics
References
Mohan V, Sandeep S, Deepa R, Shah B, Varghese C. Epidemiology of type 2 diabetes: Indian scenario. Indian J Med Res. 2007;125(3):217-30.
Anjana RM, Pradeepa R, Deepa M, Datta M, Sudha V, Unnikrishnan R, et al. The Indian Council of Medical Research-India Diabetes (ICMR-INDIAB) study: methodological details. J Diabetes Sci Technol. 2011;5(4):906-14. DOI: https://doi.org/10.1177/193229681100500413
Unnikrishnan AG, Sahay RK, Phadke U, Sharma SK, Shah P, Shukla R, et al. Cardiovascular risk in newly diagnosed type 2 diabetes patients in India. PLoS One. 2022;31(3):263619. DOI: https://doi.org/10.1371/journal.pone.0263619
Dunlay SM, Givertz MM, Aguilar D, Allen LA, Chan M, Desai AS, et al. American heart association heart failure and transplantation committee of the council on clinical cardiology; council on cardiovascular and stroke nursing; and the heart failure society of America. type 2 diabetes mellitus and heart failure. Circulation. 2019;13(7):294-324.
Prasannakumar M, Rajput R, Seshadri K, Talwalkar P, Agarwal P, Gokulnath G, et al. An observational, cross-sectional study to assess the prevalence of chronic kidney disease in type 2 diabetes patients in India (START -India). Indian J Endocrinol Metab. 2015;19(4):520-3. DOI: https://doi.org/10.4103/2230-8210.157857
Petersen AMW, Bente Klarlund PB. The anti-inflammatory effect of exercise. J of Applied Physiol. 2005;98:1154–62. DOI: https://doi.org/10.1152/japplphysiol.00164.2004
Krabbe KS, Reichenberg A, Yirmiya R. Low-dose endotoxemia and human neuropsychological functions. Brain, Behavior and Immu. 2005;19:453-60. DOI: https://doi.org/10.1016/j.bbi.2005.04.010
Calçada D, Vianello D, Giampieri E, Sala C, Castellani G, de Graaf A, et al. The role of low-grade inflammation and metabolic flexibility in aging and nutritional modulation thereof: a systems biology approach. Mech Ageing Dev. 2014;1:138-47. DOI: https://doi.org/10.1016/j.mad.2014.01.004
León-Pedroza JI, González-Tapia LA, del Olmo-Gil E, Castellanos-Rodríguez D, Escobedo G, González-Chávez A. Inflamación sistémica de grado bajo y su relación con el desarrollo de enfermedades metabólicas: de la evidencia molecular a la aplicación clínica. Low-grade systemic inflammation and the development of metabolic diseases: from the molecular evidence to the clinical practice. Cir. 2015;83(6):543-51. DOI: https://doi.org/10.1016/j.circir.2015.05.041
Larkin H. Here’s what to Know about Cardiovascular-kidney-metabolic syndrome, newly defined by the AHA. Jama. 2023;330(21):2042-3. DOI: https://doi.org/10.1001/jama.2023.22276
Newman JD, Schwartzbard AZ, Weintraub HS, Goldberg IJ, Berger JS. Primary Prevention of Cardiovascular Disease in Diabetes Mellitus. J Am Coll Cardiol. 2017;70(7):883-93. DOI: https://doi.org/10.1016/j.jacc.2017.07.001
Gajjala PR, Sanati M, Jankowski J. Cellular and molecular mechanisms of chronic kidney disease with diabetes mellitus and cardiovascular diseases as its comorbidities. Frontiers in immunology. 2015;6:340. DOI: https://doi.org/10.3389/fimmu.2015.00340
Ndumele CE, Neeland IJ, Tuttle KR, Chow SL, Mathew RO, Khan SS, et al. American heart association. a synopsis of the evidence for the science and clinical management of cardiovascular-kidney-metabolic (CKM) syndrome: a scientific statement from the American Heart Association. Circulation. 2023;148(20):1636-64. DOI: https://doi.org/10.1161/CIR.0000000000001186
Theofilis P, Vordoni A, Kalaitzidis RG. Interplay between metabolic dysfunction-associated fatty liver disease and chronic kidney disease: Epidemiology, pathophysiologic mechanisms and treatment considerations. World J Gastroenterol 2022;28(39):5691-706. DOI: https://doi.org/10.3748/wjg.v28.i39.5691
Hardy OT, Czech MP, Corvera S. What causes the insulin resistance underlying obesity. Current opinion in endocrinology, diabetes and obesity. 2012;19(2):81. DOI: https://doi.org/10.1097/MED.0b013e3283514e13
Haythorne E, Ashcroft FM. Metabolic regulation of insulin secretion in health and disease. The Biochemist. 2021;43(2):4-8. DOI: https://doi.org/10.1042/bio_2021_116
Ormazabal V, Nair S, Elfeky O, Aguayo C, Salomon C, Zuñiga FA. Association between insulin resistance and the development of cardiovascular disease. Cardiovasc Diabetol. 2018;31;17(1):122. DOI: https://doi.org/10.1186/s12933-018-0762-4
Yuan G, Al-Shali KZ, Hegele RA. Hypertriglyceridemia: its etiology, effects and treatment. CMAJ. 2007;10(8):178-9. DOI: https://doi.org/10.1503/cmaj.060963
Alessi MC, Juhan-Vague I. PAI-1 and the metabolic syndrome: links, causes and consequences. Arterioscler Thromb Vasc Biol. 2006;26(10):2200-7. DOI: https://doi.org/10.1161/01.ATV.0000242905.41404.68
Chen Z, Yu R, Xiong Y, Du F, Zhu S. A vicious circle between insulin resistance and inflammation in nonalcoholic fatty liver disease. Lipids in health and disease. 2017;16:1-9. DOI: https://doi.org/10.1186/s12944-017-0572-9
Ghosh AR, Bhattacharya R, Bhattacharya S, Nargis T, Rahaman O, Duttagupta P, et al. Adipose Recruitment and Activation of Plasmacytoid Dendritic Cells Fuel Metaflammation. Diabetes. 2016;65(11):3440-52. DOI: https://doi.org/10.2337/db16-0331
Imai Y, Dobrian AD, Morris MA, Nadler JL. Islet inflammation: a unifying target for diabetes treatment? Trends Endocrinol Metab. 2013;24(7):351-60 DOI: https://doi.org/10.1016/j.tem.2013.01.007
Li Y, Liu Y, Liu S, Gao M, Wang W, Chen K, et al. Diabetic vascular diseases: molecular mechanisms and therapeutic strategies. Signal Transduct Target Ther. 2023;8(1):152. DOI: https://doi.org/10.1038/s41392-023-01400-z
Shoelson SE, Lee J, Goldfine AB. Inflammation and insulin resistance. J Clin Invest. 2006;116(7):1793-801. DOI: https://doi.org/10.1172/JCI29069
De Bosscher K, Desmet SJ, Clarisse D, Estébanez-Perpiña E, Brunsveld L. Nuclear receptor crosstalk—defining the mechanisms for therapeutic innovation. Nature Rev Endocrinol. 2020;16(7):363-77. DOI: https://doi.org/10.1038/s41574-020-0349-5
Freeman DJ, Norrie J, Muriel J. West of Scotland coronary prevention study group; c-reactive protein is an independent predictor of risk for the development of diabetes in the west of scotland coronary prevention study. Diabetes. 2002;51(5):1596–600. DOI: https://doi.org/10.2337/diabetes.51.5.1596
Twig G, Afek A, Shamiss A, Derazne E, Tzur D, Gordon B, et al. White blood cells count and incidence of type 2 diabetes in young men. Diabetes Care. 2013;36(2):276-82. DOI: https://doi.org/10.2337/dc11-2298
Mather KJ, Funahashi T, Matsuzawa Y, Edelstein S, Bray GA, Kahn SE, et al. Diabetes Prevention Program. Adiponectin, change in adiponectin and progression to diabetes in the Diabetes Prevention Program. Diabetes. 2008;57(4):980-6. DOI: https://doi.org/10.2337/db07-1419
Sharif S, Van der Graaf Y, Cramer MJ, Kapelle LJ, de Borst GJ, Visseren FLJ, et al. SMART study group. Low-grade inflammation as a risk factor for cardiovascular events and all-cause mortality in patients with type 2 diabetes. Cardiovasc Diabetol. 2021;9;20(1):220. DOI: https://doi.org/10.1186/s12933-021-01409-0
Lean ME, Leslie WS, Barnes AC, Brosnahan N, Thom G, McCombie L, et al. Primary care-led weight management for remission of type 2 diabetes (DiRECT): an open-label, cluster-randomised trial. Lancet. 2018;391(12):541-51. DOI: https://doi.org/10.1016/S0140-6736(17)33102-1
Taylor R, Ramachandran A, Yancy WS Jr, Forouhi NG. Nutritional basis of type 2 diabetes remission. BMJ. 2021;374:1449. DOI: https://doi.org/10.1136/bmj.n1449
Goldfine AB, Fonseca V, Jablonski KA, Chen YD, Tipton L, Staten MA. Shoelson SE+ADs- Targeting Inflammation Using Salsalate in Type 2 Diabetes Study Team. Salicylate (salsalate) in patients with type 2 diabetes: a randomized trial. Ann Intern Med. 2013;159(1):1-12. DOI: https://doi.org/10.7326/0003-4819-159-1-201307020-00003
Stanley TL, Zanni MV, Johnsen S, Rasheed S, Makimura H, Lee H, et al. TNF-α antagonism with etanercept decreases glucose and increases the proportion of high molecular weight adiponectin in obese subjects with features of the metabolic syndrome. The J Clin Endocrinol & Metabol. 2011;96(1):146-50. DOI: https://doi.org/10.1210/jc.2010-1170
Bernstein LE, Berry J, Kim S, Canavan B, Grinspoon SK. Effects of etanercept in patients with the metabolic syndrome. Arch Intern Med. 2006;24(8):902-8. DOI: https://doi.org/10.1001/archinte.166.8.902
Larsen CM, Faulenbach M, Vaag A, Vølund A, Ehses JA, Seifert B, et al. Interleukin-1-receptor antagonist in type 2 diabetes mellitus. N Engl J Med. 2007;12(15):1517-26. DOI: https://doi.org/10.1056/NEJMoa065213
Ridker PM, Everett BM, Pradhan A, MacFadyen JG, Solomon DH, Zaharris E, et al. CIRT investigators low-dose methotrexate for the prevention of atherosclerotic events. N Engl J Med. 2019;21(8):752-62. DOI: https://doi.org/10.1056/NEJMoa1809798
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, et al. CANTOS Trial group. antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 2017;21;377(12):1119-31. DOI: https://doi.org/10.1056/NEJMoa1707914
Everett BM, Ridker PM. Reply: inflammatory pathways in cvd and diabetes: broad-spectrum versus selective targeting. J Am Coll Cardiol. 2018;72(12):1432-3. DOI: https://doi.org/10.1016/j.jacc.2018.07.021
Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, et al. LoDoCo2 Trial Investigators. Colchicine in Patients with Chronic Coronary Disease. N Engl J Med. 2020;5(19):1838-47. DOI: https://doi.org/10.1056/NEJMoa2021372
Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, et al. Efficacy and Safety of Low-Dose Colchicine after Myocardial Infarction. N Engl J Med. 2019;26(6):2497-505. DOI: https://doi.org/10.1056/NEJMoa1912388
Jolly SS, d'Entremont MA, Lee SF, Mian R, Tyrwhitt J, Kedev S, et al. CLEAR Investigators. Colchicine in Acute Myocardial Infarction. N Engl J Med. 2025;13(7):633-42. DOI: https://doi.org/10.1056/NEJMoa2405922
Wasko MC, Hubert HB, Lingala VB, Elliott JR, Luggen ME, Fries JF, et al. Hydroxychloroquine and risk of diabetes in patients with rheumatoid arthritis. JAMA. 2007;11(2):187-93. DOI: https://doi.org/10.1001/jama.298.2.187
Toledo FGS, Miller RG, Helbling NL, Zhang Y, DeLany JP. The effects of hydroxychloroquine on insulin sensitivity, insulin clearance and inflammation in insulin-resistant adults: A randomized trial. Diabetes Obes Metab. 2021;23(6):1252-61. DOI: https://doi.org/10.1111/dom.14333
Wasko MC, McClure CK, Kelsey SF, Huber K, Orchard T, Toledo FG. Antidiabetogenic effects of hydroxychloroquine on insulin sensitivity and beta cell function: a randomised trial. Diabetologia. 2015;58(10):2336-43. DOI: https://doi.org/10.1007/s00125-015-3689-2
Pareek A, Mehta R. Phase 4 study of safety and efficacy of the first anti-inflammatory drug approved in India in type 2 diabetes mellitus (hydroxychloroquine)-a preliminary evaluation. Endocrine Practice. 2018;24:31-2. DOI: https://doi.org/10.1016/S1530-891X(20)47055-7
Bili A, Sartorius JA, Kirchner HL, Morris SJ, Ledwich LJ, Antohe JL, et al. Hydroxychloroquine use and decreased risk of diabetes in rheumatoid arthritis patients. J Clin Rheumatol. 2011;17(3):115-20. DOI: https://doi.org/10.1097/RHU.0b013e318214b6b5
Pareek A, Chandurkar N, Thulaseedharan NK, Legha R, Agarwal M, Mathur SL, et al. Efficacy and safety of fixed dose combination of atorvastatin and hydroxychloroquine: a randomized, double-blind comparison with atorvastatin alone among Indian patients with dyslipidemia. Curr Med Res Opin. 2015;31(11):2105-17. DOI: https://doi.org/10.1185/03007995.2015.1087989
Pareek A, Chandurkar N, Thomas N, Viswanathan V, Deshpande A, Gupta OP, et al. Efficacy and safety of hydroxychloroquine in the treatment of type 2 diabetes mellitus: a double blind, randomized comparison with pioglitazone. Curr Med Res Opin. 2014;30(7):1257-66. DOI: https://doi.org/10.1185/03007995.2014.909393
Achuthan S, Ahluwalia J, Shafiq N, Bhalla A, Pareek A, Chandurkar N, et al. Hydroxychloroquine's efficacy as an antiplatelet agent study in healthy volunteers: a proof-of-concept study. J Cardiovasc Pharmacol Ther. 2015;20(2):174-80. DOI: https://doi.org/10.1177/1074248414546324
Hansen, EH, Jessing, P, Lindewald, H. Hydroxychloroquine sulphate in prevention of deep venous thrombosis following fracture of the hip, pelvis or thoracolumbar spine. The J of Bone & Joint Surg. 2007;58(8):1089-93. DOI: https://doi.org/10.2106/00004623-197658080-00008
Wu CL, Chang CC, Kor CT, Yang TH, Chiu PF, Tarng DC, et al. Hydroxychloroquine Use and Risk of CKD in Patients with Rheumatoid Arthritis. Clin J Am Soc Nephrol. 2018;13(5):702-9. DOI: https://doi.org/10.2215/CJN.11781017
Sharma TS, Wasko MC, Tang X, Vedamurthy D, Yan X, Cote J, et al. Hydroxychloroquine use is associated with decreased incident cardiovascular events in rheumatoid arthritis patients. J Am Heart Assoc. 2016;5(1):2867. DOI: https://doi.org/10.1161/JAHA.115.002867
Ulander L, Tolppanen H, Hartman O, Rissanen TT, Paakkanen R, Kuusisto J, et al. Hydroxychloroquine reduces interleukin-6 levels after myocardial infarction: The randomized, double-blind, placebo-controlled OXI pilot trial. Int J Cardiol. 2021;15:21-7. DOI: https://doi.org/10.1016/j.ijcard.2021.04.062