Polyaminoacid: revolutionizing drug delivery through advanced nanocarrier systems
DOI:
https://doi.org/10.18203/2319-2003.ijbcp20252590Keywords:
Polyaminoacid, Biomedical application, Nanoparticle, Drug delivery, PolymersAbstract
Polyaminoacid are smart nanocarriers and striking aspirant material for drug delivery. Amino-acids can be effortlessly ionized positively or negatively. Commonly used polyaminoacid chains are polylysine, polyarginine, and polyglutamic acid. Polyaminoacid polymers can also be synthesized in the laboratory and are called synthetic polyaminoacid polymers. Polyaminoacid are sensitive to acidic pH and are degraded by acid and enzymes in the lysosome, the amino acids are released and the conjugated drug portion is also released. Block polymers are versatile and multifunctional in drug delivery. PEG-copolymers can be utilized for drug targeting, organ imaging and drug delivery purpose. Only water soluble polyaminoacid can be utilized for drug delivery and other biomedical applications. The advantage of using Polyaminoacid is that they are biocompatible, biodegradable, pH sensitive, provide nutrients to the tissue upon cleavage, are conjugated with drug, proteins, and antibodies, and can be amalgamated with other polymers such as chitosan, nanoparticle synthesis with other composite material is possible. The active drug loading is highly efficient, intracellular drug delivery possible, it can cross many physiological and anatomical barriers such as the blood brain barrier, self –assembled property, delivery of prodrugs etc. Biomedical applications include cancer cell targeting, gene transfer, gene delivery, siRNA transfer, miRNA, gene silencing, intraocular delivery, intracellular delivery, brain delivery, radiological imaging, bone tuberculosis, cosmetic use, colonic drug delivery, delivery of prodrug. Therefore, polyaminoacid are versatile in drug delivery systems.
Metrics
References
Tinajero-Díaz E, de Ilarduya AM, Cavanagh B, Heise A, Muñoz-Guerra S. Poly (amino acid)-grafted polymacrolactones. Synthesis, self-assembling and ionic coupling properties. React Functional Polymers. 2019;104316. DOI: https://doi.org/10.1016/j.reactfunctpolym.2019.104316
Chatterjee S, Hui CL. Review of Stimuli-Responsive Polymers in Drug Delivery and Textile Application. Molecules. 2019;24(14):2547. DOI: https://doi.org/10.3390/molecules24142547
Craster R, Puvirajesinghe T, Guenneau S, Zhi ZL. U.S. Patent Application No. 16/096,941. 2019.
Calhoun DH, Gilchrist L. U.S. Patent Application No. 16/201,796. 2019.
Jarrett P, El-Hayek R, Sawhney AS, Guedez S. U.S. Patent Application No. 16/203,782. 2019.
Schaffert D, Badgujar N, Wagner E. Novel Fmoc-polyamino acids for solid-phase synthesis of defined polyamidoamines. Organic letters. 2011;13(7):1586-9. DOI: https://doi.org/10.1021/ol200381z
Koskan LP. U.S. Patent No. 5,057,597. Washington, DC: U.S. Patent and Trademark Office. 1991.
Rohlfing DL. Thermal polyamino acids: synthesis at less than 100 degrees C. Science. 1976;193(4247):68-70. DOI: https://doi.org/10.1126/science.935858
Allcock HR, Fuller TJ, Mack DP, Matsumura K, Smeltz KM. Synthesis of poly [(amino acid alkyl ester) phosphazenes]. Macromolecules. 1977;10(4):824-30. DOI: https://doi.org/10.1021/ma60058a020
Harada K, Shimoyama A, Mizumoto H. U.S. Patent No. 4,696,981. Washington, DC: U.S. Patent and Trademark Office. 1987.
Wood LL. U.S. Patent No. 5,292,858. Washington, DC: U.S. Patent and Trademark Office. 1994.
Huille S, Lemercier A, Soula G. U.S. Patent No. 5,904,936. Washington, DC: U.S. Patent and Trademark Office. 1999.
Mukherjee A, Waters AK, Kalyan P, Achrol AS, Kesari S, Yenugonda VM. Lipid–polymer hybrid nanoparticles as a next-generation drug delivery platform: state of the art, emerging technologies, and perspectives. Int J Nanomed. 2019;14:1937. DOI: https://doi.org/10.2147/IJN.S198353
Huang W, Zhang T, Shi P, Yang D, Luo S, Voit B, Chen H. The construction and effect of physical properties on intracellular drug delivery of poly (amino acid) capsules. Colloids Surfaces B: Biointerfaces. 2019;177:178-87. DOI: https://doi.org/10.1016/j.colsurfb.2019.01.061
Rippe M, Cosenza V, Auzély-Velty R. Design of Soft Nanocarriers Combining Hyaluronic Acid with Another Functional Polymer for Cancer Therapy and Other Biomedical Applications. Pharmaceutics. 2019;11(7):338. DOI: https://doi.org/10.3390/pharmaceutics11070338
Kumar P, Liu B, Behl G. A Comprehensive Outlook of Synthetic Strategies and Applications of Redox‐Responsive Nanogels in Drug Delivery. Macromolecular Biosci. 2019;19(8):1900071. DOI: https://doi.org/10.1002/mabi.201900071
Miyazaki T, Igarashi K, Matsumoto Y, Cabral H. One-Pot Synthesis of PEG–Poly (amino acid) Block Copolymers Assembling Polymeric Micelles with PEG-Detachable Functionality. ACS Biomater Sci Eng. 2019;5(11):5727-33. DOI: https://doi.org/10.1021/acsbiomaterials.8b01549
Oh JK. Disassembly and tumor-targeting drug delivery of reduction-responsive degradable block copolymer nanoassemblies. Polymer Chem. 2019;10(13):1554-68. DOI: https://doi.org/10.1039/C8PY01808A
Rahme K, Dagher N. Chemistry Routes for Copolymer Synthesis Containing PEG for Targeting, Imaging, and Drug Delivery Purposes. Pharmaceutics. 2019;11(7):327. DOI: https://doi.org/10.3390/pharmaceutics11070327
Bae Y, Kataoka K. Intelligent polymeric micelles from functional poly (ethylene glycol)-poly (amino acid) block copolymers. Adv Drug Delivery Rev. 2009;61(10):768-84. DOI: https://doi.org/10.1016/j.addr.2009.04.016
Wang S, He W, Xiao C, Tao Y, Wang X. Synthesis of Y-Shaped OEGylated Poly (amino acid) s: The Impact of OEG Architecture. Biomacromolecules. 2019;20(4):1655-66. DOI: https://doi.org/10.1021/acs.biomac.9b00026
Jacobs J, Pavlović D, Prydderch H, Moradi MA, Ibarboure E, Heuts JP, et al. A. Polypeptide nanoparticles obtained from emulsion polymerization of amino acid N-carboxyanhydrides. J Am Chem Society. 2019;141(32):12522-6. DOI: https://doi.org/10.1021/jacs.9b06750
Sharma G, Parchur AK, Jagtap JM, Hansen CP, Joshi A. Hybrid nanostructures in targeted drug delivery. In Hybrid Nanostructures for Cancer Theranostics. Elsevier. 2019;139-58. DOI: https://doi.org/10.1016/B978-0-12-813906-6.00008-1
Kuang Y, Chen H, Chen Z, Wan L, Liu J, Xu Z, et al. Poly (amino acid)/ZnO/mesoporous silica nanoparticle based complex drug delivery system with a charge-reversal property for cancer therapy. Colloids Surf B: Biointerfaces. 2019;181:461-9. DOI: https://doi.org/10.1016/j.colsurfb.2019.05.078
Abdelaziz HM, Abdelmoneem MA, Abdelsalam K, Freag MS, Elkhodairy KA, Elzoghby AO. Poly (Amino Acid) Nanoparticles as a Promising Tool for Anticancer Therapeutics. In Polymeric Nanoparticles as a Promising Tool for Anti-cancer Therapeutics. Academic Press. 2019;167-204. DOI: https://doi.org/10.1016/B978-0-12-816963-6.00009-1
Mauro N, Scialabba C, Puleio R, Varvarà P, Licciardi M, Cavallaro G, et al. SPIONs embedded in polyamino acid nanogels to synergistically treat tumor microenvironment and breast cancer cells. Int J Pharmaceut. 2019;555:207-19. DOI: https://doi.org/10.1016/j.ijpharm.2018.11.046
Yao J, He P, Zhang Y, Zhang H, Zhang P, Deng M, et al. PEGylated polylysine derived copolymers with reduction‐responsive side chains for anticancer drug delivery. Polymer Int. 2019;68(10):1817-25. DOI: https://doi.org/10.1002/pi.5892
Toshiyama R, Konno M, Eguchi H, Takemoto H, Noda T, Asai A, et al. Poly (ethylene glycol)–poly (lysine) block copolymer–ubenimex conjugate targets aminopeptidase N and exerts an antitumor effect in hepatocellular carcinoma stem cells. Oncogene. 2019;38(2):244. DOI: https://doi.org/10.1038/s41388-018-0406-x
Gabrani R, Ghildiyal R, Pratap N, Sharma G, Dang S. Applications of Protein Nanoparticles as Drug Delivery Vehicle. Smart Healthcare Systems. 1st edi, Chapman and Hall/CRC. 2019;199. DOI: https://doi.org/10.1201/9780429020575-13
Veiseh O, Kievit FM, Mok H, Ayesh J, Clark C, Fang C, et al. Cell transcytosing poly-arginine coated magnetic nanovector for safe and effective siRNA delivery. Biomaterials. 2011;32(24):5717-25. DOI: https://doi.org/10.1016/j.biomaterials.2011.04.039
Yuan Y, Zhao L, Shen C, He Y, Yang F, Zhang G, et al. Reactive oxygen species-responsive amino acid-based polymeric nanovehicles for tumor-selective anticancer drug delivery. Materials Sci Eng C. 2019;106:110159. DOI: https://doi.org/10.1016/j.msec.2019.110159
Li C. Poly (L-glutamic acid)–anticancer drug conjugates. Adv Drug Deliv Rev. 2002;54(5):695-713. DOI: https://doi.org/10.1016/S0169-409X(02)00045-5
Matsumura Y. Poly (amino acid) micelle nanocarriers in preclinical and clinical studies. Adv Drug Deliv Rev. 2008;60(8):899-914. DOI: https://doi.org/10.1016/j.addr.2007.11.010
Castro F, Pinto ML, Almeida R, Pereira F, Silva AM, Pereira CL, et al. Chitosan/poly (γ-glutamic acid) nanoparticles incorporating IFN-γ for immune response modulation in the context of colorectal cancer. Biomaterials Sci. 2019; DOI: https://doi.org/10.1039/C9BM00393B
Wang N, Zou Y, Yang K, Wang J. The sustained-release effect of triple anti-tuberculosis drugs carried by calcium sulfate/poly-amino acid compound materials in bone tuberculosis lesion. In IOP Conference Series: Materials Science and Eng. 2019;587(1):012003. DOI: https://doi.org/10.1088/1757-899X/587/1/012003
Jahagirdar HA, Kulkarni R, Kulkarni S. U.S. Patent Application No. 15/943,368. 2019.
Zhou M, Hou T, Li J, Yu S, Xu Z, Yin M, et al. Self-Propelled and Targeted Drug Delivery of Poly (aspartic acid)/Iron–Zinc Microrocket in the Stomach. ACS nano. 2019;13(2):1324-32. DOI: https://doi.org/10.1021/acsnano.8b06773
Pitarresi G, Casadei MA, Mandracchia D, Paolicelli P, Palumbo FS, Giammona G. Photocrosslinking of dextran and polyaspartamide derivatives: a combination suitable for colon-specific drug delivery. J Controlled Release. 2007;119(3):328-38. DOI: https://doi.org/10.1016/j.jconrel.2007.03.005
Ren DX, Chen PC, Zheng P, Xu ZN. pH/redox dual response nanoparticles with poly-γ-glutamic acid for enhanced intracellular drug delivery. Colloids and Surfaces A: Physicochemical and Engineering Aspects. 2019;577(35):NA. DOI: https://doi.org/10.1016/j.colsurfa.2019.06.002
Kataoka K, Itaka K, Ishii T, Uchida H, Uchida S, Miyuki BA. U.S. Patent Application No. 10/232,054. 2019.
Hu J, Lou Y, Wu F. Improved Intracellular Delivery of Polyarginine Peptides with Cargoes. J Physical Chem B. 2019;123(12):2636-44. DOI: https://doi.org/10.1021/acs.jpcb.8b10483
Koo AN, Lee HJ, Kim SE, Chang JH, Park C, Kim C, et al. Disulfide-cross-linked PEG-poly (amino acid) s copolymer micelles for glutathione-mediated intracellular drug delivery. Chem Communications. 2008;(48):6570-72. DOI: https://doi.org/10.1039/b815918a
Behar-Cohen F. Recent advances in slow and sustained drug release for retina drug delivery. Expert Opin Drug Delivery. 2019;16(7):679-86. DOI: https://doi.org/10.1080/17425247.2019.1618829
Yu HG, Ji HG, Kim JD, Jang HI. New Anti-Aging and Anti-Wrinkle Material: Properties and Activities of Nanoparticle Containing Poly (Aspartic Acid) Derivatives. J Nano Res. 2019;59:57-76. DOI: https://doi.org/10.4028/www.scientific.net/JNanoR.59.57
Niu Z, Thielen I, Barnett A, Loveday SM, Singh H. ε-Polylysine and β-cyclodextrin assembling as delivery systems for gastric protection of proteins and possibility to enhance intestinal permeation. J Colloid Interface Sci. 2019;546:312-23. DOI: https://doi.org/10.1016/j.jcis.2019.03.006
Huang S, Huang G. The dextrans as vehicles for gene and drug delivery. Future Medicinal Chem. 2019;11(13):1659-67. DOI: https://doi.org/10.4155/fmc-2018-0586
Ansari MA, Yadav MK, Rathore D, Svedberg A, Karim Z. Applications of Nanostructured Polymer Composites for Gene Delivery. Nanostructured Polymer Composites Biomed Application, Elsevier. 2019;211. DOI: https://doi.org/10.1016/B978-0-12-816771-7.00011-9
Osada K, Christie RJ, Kataoka K. Polymeric micelles from poly (ethylene glycol)–poly (amino acid) block copolymer for drug and gene delivery. J Royal Society Interface. 2009;6(3):S325-39. DOI: https://doi.org/10.1098/rsif.2008.0547.focus
Sun X, Cai Y, Xu Z, Zhu D. Preparation and Properties of Tumor-Targeting MRI Contrast Agent Based on Linear Polylysine Derivatives. Molecules. 2019;24(8):1477. DOI: https://doi.org/10.3390/molecules24081477
Pham W, Zhao BQ, Lo EH, Medarova Z, Rosen B, Moore A. Crossing the blood-brain barrier: a potential application of myristoylated polyarginine for in vivo neuroimaging. Neuroimage. 2005;28(1):287-92. DOI: https://doi.org/10.1016/j.neuroimage.2005.06.007
Saxena S. L-Amino Acid Based Polyester Nanocarriers for Drug Delivery and Bioimaging (Doctoral dissertation, Dept. of Chemistry). 2019.
Ban E, Kwon TH, Kim A. Delivery of therapeutic miRNA using polymer-based formulation. Drug Delivery Translational Res. 2019;1-14. DOI: https://doi.org/10.1007/s13346-019-00645-y
Mansoor S, Kondiah PP, Choonara YE, Pillay V. Polymer-Based Nanoparticle Strategies for Insulin Delivery. Polymers. 2019;11(9):1380. DOI: https://doi.org/10.3390/polym11091380
Raja MM, Lim PQ, Wong YS, Xiong GM, Zhang Y, Venkatraman S, et al. Polymeric Nanomaterials: Methods of Preparation and Characterization. In Nanocarriers for Drug Delivery, Elsevier. 2019;557-633. DOI: https://doi.org/10.1016/B978-0-12-814033-8.00018-7
Soni V, Pandey V, Asati S, Gour V, Tekade RK. Biodegradable Block Copolymers and Their Applications for Drug Delivery. In Basic Fundamentals of Drug Delivery. Academic Press. 2019;401-447. DOI: https://doi.org/10.1016/B978-0-12-817909-3.00011-X
Yu H, Huang Y, Huang Q. Synthesis and characterization of novel antimicrobial emulsifiers from ε-polylysine. J Agricultural Food Chem. 2009;58(2):1290-5. DOI: https://doi.org/10.1021/jf903300m
Costanza F, Padhee S, Wu H, Wang Y, Revenis J, Cao C, et al. Investigation of antimicrobial PEG-poly (amino acid) s. RSC Advances. 2014;4(4):2089-95. DOI: https://doi.org/10.1039/C3RA44324H
Fan X, Yan Y. Poly (amino acid)/ZnO nanoparticles nanocomposites with enhanced thermal, mechanical, and antibacterial properties. Polymer Bull. 2019;1-19. DOI: https://doi.org/10.1007/s00289-019-02860-6
Wright SG, Christensen T, Yeoh T, Rickey ME, Hotz JM, Kumar R, et al. U.S. Patent Application No. 15/991,646. 2019.
Barreiro AS, Piñeiro I F, Badiola I, Márquez J. U. S. Patent Application No. 16/091,071. 2019.
Zheng S, Guan Y, Yu H, Huang G, Zheng C. Poly-l-lysine-coated PLGA/poly (amino acid)-modified hydroxyapatite porous scaffolds as efficient tissue engineering scaffolds for cell adhesion, proliferation, and differentiation. New J Chem. 2019;43(25):9989-10002. DOI: https://doi.org/10.1039/C9NJ01675A
Akagi T, Wang X, Uto T, Baba M, Akashi M. Protein direct delivery to dendritic cells using nanoparticles based on amphiphilic poly (amino acid) derivatives. Biomaterials. 2007;28(23):3427-36. DOI: https://doi.org/10.1016/j.biomaterials.2007.04.023
Santra S, Perez JM. Selective N-alkylation of β-alanine facilitates the synthesis of a poly (amino acid)-based theranosticNano agent. Biomacromolecules. 2011;12(11):3917-27. DOI: https://doi.org/10.1021/bm2009334