Effectiveness of low dose physostigmine for dose reduction of morphine in pain management

Authors

  • Rahul P. Bhavasar Department of Pharmacology, Dr. Ulhas Patil Medical College and Hospital, Jalgaon, Maharashtra, India
  • Suyog S. Chopade Department of Pharmacology, Dr. Ulhas Patil Medical College and Hospital, Jalgaon, Maharashtra, India
  • Yogita D. Sulaxane Department of Physiology, Dr. Ulhas Patil Medical College and Hospital, Jalgaon, Maharashtra, India
  • Devendra R. Chaudhari Department of Pharmacology, Dr. Ulhas Patil Medical College and Hospital, Jalgaon, Maharashtra, India
  • Bapurao M. Bite Department of Pharmacology, Dr. Ulhas Patil Medical College and Hospital, Jalgaon, Maharashtra, India

DOI:

https://doi.org/10.18203/2319-2003.ijbcp20192102

Keywords:

Antinociceptive, Morphine, Pain, Physostigmine, Tail withdrawal

Abstract

Background: This is an interventional study, undertaken in the experimental animal models for the evaluation of the antinociceptive potential of Physostigmine and its combination with Morphine at their sub-analgesic doses. The objective of the study was to evaluate the antinociceptive potential of Physostigmine alone and in combination with morphine.

Methods: Antinociceptive effect of Physostigmine in three graded doses (50, 100 and 200 μg/kg) and combination of Physostigmine at low dose (50 μg/kg) with sub-analgesic dose of Morphine (0.1 mg/kg) and Morphine in analgesic dose (1 mg/kg) was evaluated by using Hot Water Bath method in albino rats.

Results: Comparison of maximal possible effect in percentage (MPE in %) between groups at 90 minutes in control, Morphine, Physostigmine in 50, 100, 200 μg/ kg doses and combination group respectively, demonstrated significant difference (p <0.001) when compared by one way ANOVA test. There was no much increase in maximal possible effect in the tail withdrawal latency in Physostigmine 50 μg/kg (SC) treatment at 90 min (5.50±0.88) in comparison to control (NS) treatment group. Combination treatment of low doses of both Physostigmine 50 μg/kg + Morphine 0.1 mg/kg increased in maximal possible effect the tail withdrawal latency 90 min (53.87±1.38) in-comparison to control (NS) treatment group (6.17±0.92).

Conclusions: Physostigmine is more potent antinociceptive than Morphine and Physostigmine potentiated the antinociceptive activity of low dose of standard drug Morphine.

References

Balmer HG, Nunn TJ. Intramuscular ketamine with hyaluronidase. Nineteen daily anaesthetics administered to a child for radiotherapy. Anaesthesia. 1977;32(7):636-8.

Barash, Paul G, Cullen, Bruce F, Stoelting, Robert K. Clinical Anesthesia. 5th Ed. Philadelphia: Lippincott Williams & Wilkins; 2006:1405-1412.

Yang XF, Xiao Y, Xu MY. Both endogenous and exogenous ACh plays antinociceptive role in hippocampus CA1 of rats. J Neural Transm. 2008 Jan 1;115(1):1-6.

Mojtahedin A, Tamaddonfard E, Zanbouri A. Role of central muscarinic cholinergic receptors in the formalin-induced pain in rats. Indian J Pharmacol. 2009 Jun;41(3):144.

Flodmark S, Wramner T. The analgetic action of morphine, eserine and prostigmine studied by a modified Hardy-Wolff-Goodell method. Acta Physiol Scand. 1945;9:88-96.

Pedigo NW, Dewey WL. Comparison of the antinociceptive activity of intraventricularly administered acetylcholine to narcotic antinociception. Neurosci Lett. 1981;26:85-90.

Pedigo NW, Dewey WL, Harris LS. Determination and characterization of the antinociceptive activity of intraventricularly administered acetylcholine in mice. J Pharmacol Exp Ther. 1975;193:845-52.

Metys J, Wagner N, Metysova J. Studies of the central antinociceptive action of cholinomimetic agents. Int J Neuropharmacol. 1969;8:413-25.

Oliveira MA, Prado WA. Antinociception and behavioral manifestations induced by intracerebroventricular or intra-amygdaloid administration of cholinergic agonists in the rat. Pain. 1994 Jun 1;57(3):383-91.

Hayes RL, Katayama Y, Watkin LR. Bilateral lesions of dorsolateral funiculus of the cat spinal cord: effects on basal nociceptive reflexes and nociceptive suppression produced by cholinergic activation of the pontine parabrachial region. Brain Res. 1984;311:267-80.

Terenzi MG, Prado WA. Antinociception elicited by electrical or chemical stimulation of the rat habenular complex and its sensitivity to systemic antagonists. Brain Res. 1990;535:18-24.

Ireson JD. A comparison of the antinociceptive actions of cholinomimetics and morphine-like drugs. Br J Pharmacol. 1970;40:92-101.

Pleuvry BJ, Tobias MA. Comparison of the antinociceptive activities of physiostigmine, oxotremorine and morphine in the mouse. Br J Pharmacol. 1971;43:706-14.

Lipman JJ, Spencer PSJ. A comparison of muscarinic cholinergic involvement in the antinociceptive effects of morphine and clonidine in the mouse. Eur J Pharmacol. 1980;64:249-58.

Cozanitis DA, Friedman T, Furst S. Study of the analgesic effect of galantamine, a cholinesterase inhibitor. Arch Int Pharmacodyn Ther. 1983;266:229-38.

Lawrence D, Livingston A. The effect of physostigmine and neostigmine on ketamine anaesthesia and analgesia. Br J Pharmacol. 1979;67:427.

Romano J, Shih TM. Cholinergic mechanisms of analgesia produced by physostigmine, morphine and cold water swimming. Neuropharmacol. 1983;22:827-33.

Pert A. The cholinergic system and nociception in the primate: interactions with morphine. Psychopharmacol. 1975 Jan 1;44(2):131-7.

Nemirovsky A. The effect of M-cholinomimetics on nociceptive transmission in the spinal cord. Farmakol Toksikol. 1985;48:36-9.

Nemirovsky A. The effect of anticholinesterases on nociceptive transmission in the spinal cord. Farmakol Toksikol. 1988;51:12-4.

Kharkevich DA, Nemirovsky A. Antinociceptive activity of muscarinomimetic agents. Ann Ist Super Sanita. 1990;26:11-5.

Gillberg PG, Hartvig P, Gordh T. Behavioral effects after intrathecal administration of cholinergic receptor agonists in the rat. Psychopharmacol. 1990;100:464-9.

Smith MD, Yang X. Antinociceptive effect of spinal cholinergic stimulation: interaction with substance P. Life Sci. 1989;45:1255-61.

Vogel HG. Drug Discovery and Evaluation Pharmacological Assays. 2nd ed. Germany: Springer; 2002:697.

Nemirovsky A. The effect of M-cholinomimetics on nociceptive transmission in the spinal cord. Farmakologiya I Toksikologiya. 1985;48:36-9.

Gillberg PG, Gordh T Jr, Jansson I. Characterization of the antinociception induced by intrathecally administered carbachol. Pharmacol Toxicol. 1989;64:340-3.

Gordh JT, Jansson I, Hartvig P. Interactions between noradrenergic and cholinergic mechanisms involved in spinal nociceptive processing. Acta Anesthesiol Scand. 1989;33:39-47.

Yaksh TL, Dirksen R, Harty GJ. Antinociceptive effects of intrathecal injection cholinomimetic drugs in the rat and cat. Eur J Pharmacol. 1985;117:81-8.

Yaksh TL, Grafe MR, Malkmus S, Rathbun ML, Eisenach JC. Studies on the safety of chronically administered intrathecal neostigmine methylsulfate in rats and dogs. Anesthesiology. J American Society Anesthesiol. 1995 Feb 1;82(2):412-27.

Petersson J, Gordh TE, Hartvig P, Wiklund L. A double-blind trial of the analgesic properties of physostigmine in postoperative patients. Acta Anaesthesiol Scand. 1986;30:283-8.

Beilin B, Bessler H, Papismedov L, Weinstock M, Shavit Y. Continuous physostigmine combined with morphine‐based patient‐controlled analgesia in the postoperative period. Acta Anaesthesiol Scand. 2005;49(1):78-84.

Downloads

Published

2019-05-23

How to Cite

Bhavasar, R. P., Chopade, S. S., Sulaxane, Y. D., Chaudhari, D. R., & Bite, B. M. (2019). Effectiveness of low dose physostigmine for dose reduction of morphine in pain management. International Journal of Basic & Clinical Pharmacology, 8(6), 1203–1208. https://doi.org/10.18203/2319-2003.ijbcp20192102

Issue

Section

Original Research Articles