Arsenic detoxification by phytoremediation

Ashraf Hossain Talukder, Shahin Mahmud, Shoaib Mahmud Shaon, Rafsan Zani Tanvir, Mithun Kumar Saha, Abdullah Al Imran, Md. Shariful Islam


Heavy metals pollution is amongst the commonest form of environmental pollution. These metals have accumulated over time from the smelting and mining activities of man, from poor waste disposal practices and from modernization. Recently the impact of heavy metal pollution of the environment is stirring up serious concerns since the discovery that some edible plants accumulate these metals to a level, toxic to both themselves and to the animals that consumes them. Common features of heavily polluted soil include barrenness, desertification, erosion, and this usually result in developmental stagnation in areas with such pollution. More researches have recently been stepped up in the field of remediating soils polluted with heavy metals. Traditional method includes excavation of the top soil, capping of the soil, stabilization of the polluting heavy metals, soil washing. In recent time, emphases have been drawn to the use of plants that has high metal accumulating and tolerating capacity to remediate metal-contaminated soil. This mini-review highlights the different conventional and recent practices in the control of heavy metal pollution.


Environmental pollution, Heavy metals, Arsenic

Full Text:



Glick BR. Phytoremediation: synergistic use of plants and bacteria to clean up the environment. Biotechnol Adv. 2003;21(5):383-93.

Chaney RL. Plant uptake of inorganic waste constituents. In: Parr JF, editor. Land Treatment of Hazardous Wastes. Park Ridge, NJ: Noyes Data Corp; 1983: 50-76.

Salt DE, Smith RD, Raskin I. Phytoremediation. Annu Rev Plant Physiol Plant Mol Biol. 1998;49:643-68.

Garbisu C, Alkorta I. Phytoextraction: a cost-effective plant-based technology for the removal of metals from the environment. Bioresour Technol. 2001;77:229-36.

Rascio N, Navari-Izzo F. Heavy metal hyperaccumulating plants: how and why do they do it? And what makes them so interesting? Plant Sci. 2011;180(2):169-81.

Ali H, Khan E, Sajad MA. Phytoremediation of heavy metals – concepts and applications. Chemosphere. 2013;91(7):869-81.

Xue PY, Yan CZ. Arsenic accumulation and translocation in the submerged macrophyte Hydrilla verticillata (L.f.) Royle. Chemosphere. 2011;85(7):1176-81.

Barzanti R, Colzi I, Arnetoli M, Gallo A, Pignattelli S, Gabbrielli R, et al. Cadmium phytoextraction potential of different Alyssum species. J Hazard Mater. 2011;196:66-72.

Abdallah MA. Phytoremediation of heavy metals from aqueous solutions by two aquatic macrophytes, Ceratophyllum demersum and Lemna gibba L. Environ Technol. 2012;33(13-15):1609-14.

Mohanty M, Patra HK. Phytoremediation potential of paragrass – an in situ approach for chromium contaminated soil. Int J Phytoremediation. 2012;14(8):796-805.

Meeinkuirt W, Pokethitiyook P, Kruatrachue M, Tanhan P, Chaiyarat R. Phytostabilization of a Pb-contaminated mine tailing by various tree species in pot and field trial experiments. Int J Phytoremediation. 2012;14(9):925-38.

Adki VS, Jadhav JP, Bapat VA. Nopalea cochenillifera, a potential chromium (VI) hyperaccumulator plant. Environ Sci Pollut Res Int. 2013;20(2):1173-80.

Amer N, Al Chami Z, Al Bitar L, Mondelli D, Dumontet S. Evaluation of Atriplex halimus, Medicago lupulina and Portulaca oleracea for phytoremediation of Ni, Pb, and Zn. Int J Phytoremediation. 2013;15(5):498-512..

Arbaoui S, Evlard A, Mhamdi Mel W, Campanella B, Paul R, Bettaieb T. Potential of kenaf (Hibiscus cannabinus L.) and corn (Zea mays L.) for phytoremediation of dredging sludge contaminated by trace metals. Biodegradation. 2013;24(4):563-7.

Pratas J, Favas PJ, D’Souza R, Varun M, Paul MS. Phytoremedial assessment of flora tolerant to heavy metals in the contaminated soils of an abandoned Pb mine in Central Portugal. Chemosphere. 2013;90(8):2216-25.

Ficko SA, Rutter A, Zeeb BA. Phytoextraction and uptake patterns of weathered polychlorinated biphenyl-contaminated soils using three perennial weed species. J Environ Qual. 2011;40(6):1870-7.

Datta R, Das P, Smith S, Punamiya P, Ramanathan DM, Reddy R, et al. Phytoremediation potential of vetiver grass [Chrysopogon zizanioides (L.)] for tetracycline. Int J Phytoremediation. 2013;15(4):343-51.

Ma TT, Teng Y, Luo YM, Christie P. Legume-grass intercropping phytoremediation of phthalic acid esters in soil near an electronic waste recycling site: a field study. Int J Phytoremediation. 2013;15(2):154-67.

Saiyood S, Inthorn D, Vangnai AS, Thiravetyan P. Phytoremediation of bisphenol A and total dissolved solids by the mangrove plant, Bruguiera gymnorhiza. Int J Phytoremediation. 2013;15(5):427-38.

Souza FA, Dziedzic M, Cubas SA, Maranho LT. Restoration of polluted waters by phytoremediation using Myriophyllum aquaticum (Vell.) Verdc. Haloragaceae. J Environ Manage. 2013;120:5-9.

Verbruggen N, Hermans C, Schat H. Molecular mechanisms of metal hyperaccumulation in plants. New Phytol. 2009;181(4):759-76.

Thapa G, Sadhukhan A, Panda SK, Sahoo L. Molecular mechanistic model of plant heavy metal tolerance. Biometals. 2012;25(3):489-505.

Claire-Lise M, Nathalie V. The use of the model species Arabidopsis halleri towards phytoextraction of cadmium polluted soils. N Biotechnol. 2012;30(1):9-14.

Beynon ER, Symons ZC, Jackson RG, Lorenz A, Rylott EL, Bruce NC. The role of oxophytodienoate reductases in the detoxification of the explosive 2,4,6-trinitrotoluene by Arabidopsis. Plant Physiol. 2009;151(1):253-61.

Rao MR, Halfhill MD, Abercrombie LG, Ranjan P, Abercrombie JM, Gouffon JS, et al. Phytoremediation and phytosensing of chemical contaminants, RDX and TNT: identification of the required target genes. Funct Integr Genomics. 2009;9(4):537-47.

Pineau C, Loubet S, Lefoulon C, Chalies C, Fizames C, Lacombe B, et al. Natural variation at the FRD3 MATE transporter locus reveals cross-talk between Fe homeostasis and Zn tolerance in Arabidopsis thaliana. PLoS Genet. 2012;8(12):e1003120.

Gaudet M, Pietrini F, Beritognolo I, Iori V, Zacchini M, Massacci A, et al. Intraspecific variation of physiological and molecular response to cadmium stress in Populus nigra L. Tree Physiol. 2011;31(12):1309-18.

He J, Li H, Luo J, Ma C, Li S, Qu L, et al. A transcriptomic network underlies microstructural and physiological responses to cadmium in Populus x canescens. Plant Physiol. 2013;162(1):424-39.

Marmiroli M, Pietrini F, Maestri E, Zacchini M, Marmiroli N, Massacci A. Growth, physiological and molecular traits in Salicaceae trees investigated for phytoremediation of heavy metals and organics. Tree Physiol. 2011;31(12):1319-34.

Induri BR, Ellis DR, Slavov GT, Yin T, Zhang X, Muchero W, et al. Identification of quantitative trait loci and candidate genes for cadmium tolerance in Populus. Tree Physiol. 2012;32(5):626-38.

Alvarez S, Berla BM, Sheffield J, Cahoon RE, Jez JM, Hicks LM. Comprehensive analysis of the Brassica juncea root proteome in response to cadmium exposure by complementary proteomic approaches. Proteomics. 2009;9(9):2419-31.

Lang M, Hao M, Fan Q, Wang W, Mo S, Zhao W, et al. Functional characterization of BjCET3 and BjCET4, two new cation-efflux transporters from Brassica juncea L. J Exp Bot. 2011;62(13):4467-80.

Paulose B, Kandasamy S, Dhankher OP. Expression profiling of Crambe abyssinica under arsenate stress identifies genes and gene networks involved in arsenic metabolism and detoxification. BMC Plant Biol. 2010;10:108.

Zulfiqar A, Paulose B, Chhikara S, Dhankher OP. Identifying genes and gene networks involved in chromium metabolism and detoxification in Crambe abyssinica. Environ Pollut. 2011;159(10):3123-8.

Li F, Shi J, Shen C, Chen G, Hu S, Chen Y. Proteomic characterization of copper stress response in Elsholtzia splendens roots and leaves. Plant Mol Biol. 2009;71(3):251 63.

Lyubenova L, Nehnevajova E, Herzig R, Schröder P. Response of antioxidant enzymes in Nicotiana tabacum clones during phytoextraction of heavy metals. Environ Sci Pollut Res Int. 2009;16(5):573-81.

Matsui T, Nomura Y, Takano M, Imai S, Nakayama H, Miyasaka H, et al. Molecular cloning and partial characterization of a peroxidase gene expressed in the roots of Portulaca oleracea cv. one potentially useful in the remediation of phenolic pollutants. Biosci Biotechnol Biochem. 2011;75(5):882-90.

Hung CY, Holliday BM, Kaur H, Yadav R, Kittur FS, Xie J. Identification and characterization of selenate- and selenite-responsive genes in a Se-hyperaccumulator Astragalus racemosus. Mol Biol Rep. 2012;39(7):7635-46.

Mills RF, Peaston KA, Runions J, Williams LE. HvHMA2, a P(1B)-ATPase from barley, is highly conserved among cereals and functions in Zn and Cd transport. PLoS One. 2012;7(8):e42640.

Xu J, Sun J, Du L, Liu X. Comparative transcriptome analysis of cadmium responses in Solanum nigrum and Solanum torvum. New Phytol. 2012;196(1):110-24.

Inui H, Sawada M, Goto J, Yamazaki K, Kodama N, Tsuruta H, et al. A major latex-like protein is a key factor in crop contamination by persistent organic pollutants. Plant Physiol. 2013;161(4):2128-35.

Tan J, Wang J, Chai T, Zhang Y, Feng S, Li Y, et al. Functional analyses of TaHMA2, a P(1B)-type ATPase in wheat. Plant Biotechnol J. 2013;11(4):420-31.

Wauchope RD, McWhorter CG. Arsenic residues in soybean seed from simulated MSMA spray drift. Bull Environ Contam Toxicol. 1977;17(2):165-7.

Carbonell-Barrachina AA, Burtiõ F, Mataix J. Arsenic uptake, distribution and accumulation in tomato plants: effect of arsenite on plant growth and yield. J Plant Nut. 1995;18:1237-50.

Carbonell-Barrachina AA, Burtiõ F, Burgos-Hernãndez A, López E, Mataix J. The influence of arsenite concentration on arsenic accumulation in tomato and bean plants. Sci Hortic. 1997;71:167-76.

Porter EK, Peterson PJ. Arsenic tolerance in grasses growing on mine waste. Environ Pollut. 1977;14:255-65.

Masscheleyn PH, DeLaune RD, Patrick WH Jr. A hybrid generation atomic absorption technique for arsenic speciation. J Environ. Qual. 1991;20:96-100.

Nissen P, Benson AA. Arsenic metabolism in freshwater and terrestrial plants. Physiol Plant. 1982;54:446-50.

Pyles RA, Woolson EA. Quantitation and characterization of arsenic compounds in vegetables grown in arsenic acid treated soil. J Agric Food Chem. 1982;30:866-70.

Helgesen H, Larsen EH. Bioavailability and speciation of arsenic in carrots grown in contaminated soil. Analyst. 1988;123(5):791-6.

Quaghebeur M, Rengel Z. The distribution of arsenate and arsenite is shoots and roots of Holcus lanatus in influenced by arsenic tolerance and arsenate and phosphate supply. Plant Physiol. 2003;132(3):1600-9.

Mattusch J, Wennrich R, Schmidt AC, Reisser W. Determination of arsenic species in water, soil and plants. Fresenius J Anal Chem. 2000;366(2):200-03.

Philips SE, Taylor ML. Oxidation of arsenite to arsenate by Alcaligenes foecalis. Appl Environ Microbiol. 1976;32(3):392-9.

Edmonds JS, Francesconi KA. Transformations of arsenic in the marine environment. Experientia. 1987;43:553-7.

Sachs RM, Michaels JL. Comparative phytotoxicity among four arsenical herbicides. Weed Sci. 1971;19:558-64.

Galbraith H, Lejeune K, Lipton J. Metal and arsenic impacts to soils, vegetation communities and wildlife habitat in southwest Montana uplands contaminated by smelter emissions. 1. Field evaluation. Environ Toxicol Chem. 1995;14:1895-903.

Elstner EF. Oxygen activation and oxygen toxicity. Annu Rev Plant Physiol. 1982;33:73.

Benavides MP, Gallego SM, Comba ME, Tomaro ML. Relationship between polyamines and paraquat toxicity in sunflower leaf discs. J Plant Growth Regul. 2000;31:215-24.

Borrell A, Carbonell L, Farras R, Puig-Parellada P, Tiburcio AF. Polyamines inhibit lipid peroxidation in senescing oat leaves. Physiol Plant. 1997;99:385-90.

Hartley-Whitaker J, Ainsworth G, Meharg AA. Copper and arsenate-induced oxidative stress in Holcus lanatus L. clones with different sensitivity. Plant Cell Environ. 2001;24:713 22.

Mylona PV, Polidoros AN, Scandalios JG. Modulation of antioxidant responses by arsenic in maize. Free Radic Biol Med. 1998;25(4-5):576-85.