DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20171674

Antimicrobial susceptibility pattern of pus culture in a tertiary care hospital of Jharkhand, India

Rajiv Kumar, Akhilesh Kumar, Umashanker Prasad Keshri, Manju Gari, Sumit Kumar Mahato, Pholgu Protim

Abstract


Background: Antimicrobial resistance is developing day by day leading to increase not only in health care cost but also severity and death rate from certain infection that could have been avoided by rational use of existing and new antimicrobial agents. Present study is undertaken for this purpose to analyse the types of pathogens involved and their antibiotic sensitivity isolated from pus culture reports in a tertiary care hospital.

Methods: Observational study was conducted using pus culture and sensitivity reports collected retrospectively from the records maintained in the Department of Microbiology over a period of 5 months from August 2016 to December 2016 in tertiary care hospital.

Results: 85 percent pus samples were found culture positive of which microorganism isolated in decreasing order were Staphylococcus aureus, Pseudomonas, Klebsella and E. coli. Staphylococcus aureus was sensitive to fixed drug combination of piperacillin with tazobactam, linezolid, ceftriaxone with sulbactum, levofloxacillin and ciprofloxacin and resistance to cefotaxime, cloxacillin and ampicillin. Pseudomonas was highly sensitive to fixed drug combination of cefoperazone with sulbactum, piperacillin with tazobactum, ceftriaxone with sulbactum and resistance to cloxacillin and cefotaxime. Klebsiella showed high sensitivity to piperacillin with tazobactum, cefoperazone with sulbactum, ceftriaxone with sulbactum and was found resistant with norfloxacin and amoxycillin. E. coli showed high sensitivity in decreasing order with amikacin and gentamycin and resistance in increasing order with cefotaxime, cloxacillin, ampicillin and norfloxacin.

Conclusions: The sensitivity patterns were different for each isolated microorganism but high sensitivity was found with fixed antimicrobial drug combination and resistance to frequently used drugs.


Keywords


Antibiotics sensitivity testing, Drug Resistance, Pus culture

Full Text:

PDF

References


Koneman WK, Allen SD, Janda WM, Schreckenberger PC, Propcop GW, Woods GL, et al. Philadelphia Color Atlas and Textbook of Diagnostic Microbiology, 6th ed. Lippincott Raven; 2005:624-626.

Chopra A, Puri R, Mittal RR, Kanta S. A clinical and bacteriological study of pyodermas. Indian J Dermatol Venereol Leprol. 1994;60:200-2.

Subedi S, Chaudhary M, Shrestha B. High MDR and ESBL producing Escherichia coli and Klebsiella pneumoniae from urine, pus and sputum. Br J Med Med Res. 2016;13(10):1-10.

Garg A, Anupurba S, Garg J. Bacteriological profile and antimicrobial resistance of blood culture isolates from a university hospital. J Indian Aca Clin Med. 2007;8(2):139-43.

Magiorakos AP, Srinivasan A, Carey RB, Carmeli Y, Falagas ME. Multi drug resistance, extensively drug resistance and pandrug-resistance bacteria: an international expert proposal for interim standard definations for acquired resistance. Clin Microbiol Infect. 2012;18:268-81.

Sharafati-chaleshtori R, Sharafati-chaleshtori F, Karimi A. Antibiotic resistance pattern of staphylococcus strains isolated from orange and apple juices in Shahre-kord, Iran. Pak J Med Sci. 2010;26:615-8.

Collee, Mackie JG, Mccartney. Practical medical microbiology (English), 14th edn, Churchill Livingstone, London; 1996:265-463.

Gohel K, Jojera A, Soni S, Gang S, Sabnis R, Desai M. Bacteriological profile and drug resistance patterns of blood culture isolates in a tertiary care nephrourology teaching institute. Bio Med Res Internat. 2014:1-5.

Mohanty S, Kapil A, Dhawan B, Das BK. Bacterilogical and antimicrobial susceptibility profile of soft tissue infections from northern India. Indian J Med Sci. 2004;58:10-5.

Singh V, Chauhan PK, Bodh UA, Kaushal K, Iqbal A. Isolation and antibiogram pattern of methicillin resistant Staphylococcus aureus causing wound infection. Int J Anal Pharm Biomed Sci. 2012;1(1):18-21.

Hanaki H, Kuwahara-Arai K, Boyle-Vavra S, Daum R, Labischinski H, Hiramatsu K. Activated cell-wall synthesis is associated with Vancomycin resistance in Methicillin- resistant Staphylococcus aureus clinical strains Mu3 and Mu50. J Antimicrob Chemother. 1998;42:199-209.

Befikadu LW, Zewdneh SS, Hailemeskel MA, Fetene D. Antibiotic susceptibility pattern of staphylococcus aureus strains from patients in ethiopia. IJPSR. 2012;3(12):4889-92.

Brooks GF, Carroll KC, Butel JS, dan Morse SA, Jawetz, Melnick, Adelbergs MedicalMicrobiology, 24th ed. New York: The McGraw-Hill Companiess, Inc.; 2007:224-232.

Lowy FD. Staphylococcal infections. In: Longo DL, editor. Harrison’s principles of internal medicine 18th ed. New Delhi: Mc Graw-Hill Publishers; 2012:1168.

Hancock RE. The bacterial outer membrane as a drug barrier. Trends Microbiol. 1997;5:37-42.

Piddock LJ. Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs. 1999;58(2):11-8.

Roberts MC. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic motility, and distribution. FEMS Microbiol Rev. 1996;19:1-24.

Portillo A, Lantero M, Gastañares MJ, Ruiz-Larrea F, Torres C. Int J Antimicrob Agents. 1999;13(2):137-40.

Franco BE, Martinez MA, Rodriguez MAS, Wertheimer AI. The determinants of the antibiotic resistance process. Infect Drug Resist. 2009;2:1-11.

Russo TM, Johnson JR. Diseases caused by gram negative enteric bacilli. In: Longo DL, editor. Harrison’s principles of internal medicine18th ed. New Delhi: Mc Graw-Hill Publishers; 2012:1255.

Arora D, Jindal N, Kumar R, Romit. Emerging antibiotic resistance in Pseudomonas aeruginosa. Int J Pharm Pharm Sci. 2011;3(2):82-4.

Rashid A, Chowdhury A, Rahman SHZ, Begum SA, Muazzam N. Infections by Pseudomonas aeruginosa and antibiotic resistance pattern of the isolates from Dhaka Medical College Hospital. Bangladesh J Med Microbiol. 2007;1(2):48-51.

Bhandari S, Banjara MR, Lekhak B, Bhatta DR, Regmi SR. Multi-drug and pan-drug resistant Pseudomonas aeruginosa: A challenge in post-antibiotic era. Nepal J Sci Tech. 2012;13(2):197-202.

Ramana BV, Chaudhury A. Antibiotic resistance pattern of Pseudomonas aureuginosa isolated from healthcare associated infections at a tertiary care hospital. J Sci Soc. 2012;39:78-80.

Boyd A, Chakrabarty AM. Pseudomonas aeruginosa biofilms: role of the alginate exopolysaccharide. J Ind Microbiol. 1995;15(3):162-8.

Podschun R, Ullmann U. Klebsiella spp. as nosocomial pathogens: epidemiology, taxonomy, typing methods, andpathogenicity factors. Clin Microbiol Reviews. 1998;11(4):589-603.

Gupta, V, Kumarasamy K, Gulati N, Garg R, Krishnan P, Chander J. AmpC β-lactamases in nosocomial isolates of Klebsiella pneumoniae from India. Indian J Med Res. 2012;136(2):237-41.

Hansotia JD, Agrawal V, Pathak AA, Saoji AM, Extended spectrum beta lactamase mediated resistance to 3rdgeneration cephalosporin in Klebsiella pneumoniae in Nagpur, Central India. Indian J Med Res. 1997;105:158-61.

Papp-Wallace KM, Endimiani A, Taracila MA, Bonomo RA. Carbapenems: past, present, and future. Antimicrob Agen Chemother. 2011;55(11):4943-60.

Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL. Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Reviews. 2012;25(4):682-707.

Paterson DL, Bonomo RA. Extended-spectrum ß-lactamases: a clinical update. Clin Microbiol Rev. 2005;18:657-86.

Ali Abdel Rahim KA, Ali Mohamed AM. Prevalence of extended spectrum β-Lactamase producing Klebsiella pneumoniae in clinical isolates. Jundishapur J Microbiol. 2014;7(11):e17114.

Namratha KG, Sreeshma P, Subbannayya K, Dinesh PV, Champa H. Characterization and Antibiogram of Klebsiella spp. Isolated from Clinical Specimen in a Rural Teaching Hospital. Schol J Appl Med Sci. 2015;3(2E):878-83.

Ma L, Lin CJ, Chen JH, Fung CP, Chang FY, Lai YK, et al. Widespread dissemination of aminoglycoside resistance genes armA and rmtB in Klebsiella pneumoniae isolates in Taiwan producing CTX-M-type extended-spectrum beta-lactamases. Antimicrob Agents Chemother. 2009;53(1):104-11.

Galimand M, Courvalin P, Lambert T. Plasmid-mediated high level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNAmethylation. Antimicrob. Agents Chemother. 2003;47:2565-71.

Doi Y, Arakawa Y. 16S ribosomal RNA methylation: emerging resistance mechanism against aminoglycosides. Clin Infect Dis. 2007;45:88-94.

Subha A, Ananthan S. Extended-spectrum ß-lactamase (ESBL)mediated resistance to the third generation cephalosporins among Klebsiella pneumoniae in Chennai. Indian J Med Microbiol. 2002;20:92-5.

Raval PN, Patel PG, Patel BV, Soni ST, Bhatt SK, Vegad MM, et al. Microbiological surveillance of intensive care units in a tertiary care teaching hospital - western India. Int J Microbiol Res. 2012;4(7):270-4.

Kambaralieva B, Marat B, Ashirali Z, Harun-Or-Rashid M, Sakamoto J. An assessment of antibiotics prescribed at the secondary health-care level in the Kyrgyz Republic. Nagoya J Med Sci. 2011;73(3-4):157-68.

Shigemura K, Tanaka K, Okada H, Nakano Y, Kinoshita S, Gotoh A, et al. Pathogen occurrence and antimicrobial susceptibility of urinary tract infection cases during a 20-year period (1983-2002) at a single institution in Japan. Jpn J Infects Dis. 2005;58:303-8.