Nanotechnology- future prospect in recent medicine: a review


  • Monalisa Jena Department of Pharmacology, IMS & SUM Hospital, Bhubaneswar, India
  • Swati Mishra Department of Pharmacology, IMS & SUM Hospital, Bhubaneswar, India
  • Swetalina Jena Department of Microbiology, S.C.B. Medical College, Cuttack, India
  • Sudhanshu S. Mishra Department of Pharmacology, IMS & SUM Hospital, Bhubaneswar, India


Nanotech, Nano robots, Nanoparticles, Nanometers


Any damage at molecular or cellular level is the major culprit for disease & ill health. Nanotechnology, “the manufacturing technology of the 21st century," helps us economically build a broad range of complex molecular machines by manipulating matter on an atomic and molecular scale. Nanotech may be able to create many new materials and devices with at least one dimension sized from 1 to 100 nanometres with a vast range of applications, such as in medicine, electronics, biomaterials and energy production. Lots of new possibilities come into account in relation to use of nanotechnology in medicines. Nanotechnology in medicine involves applications of nanoparticles, also involves nano-robots to make repairs at the cellular levels. On the other hand, nanotechnology raises many of the same issues as any new technology, including concerns about the toxicity and environmental impact of nanomaterials.


Nanotechnology in Medicine: Huge Potential, But What Are The Risks? Available at Accessed 4 January 2013

Sinani VA, Koktysh DS, Yun BG, Matts RL, Pappas TC, Motamedi M, Thomas SN, Kotov NA. Collagen coating promotes biocompatibility of semiconductor nanoparticles in stratified LBL films. Nano Letters 2003, 3:1177-82.

Zhang Y, Kohler N, Zhang M. Surface modification of superparamagnetic magnetite nanoparticles and their intracellular uptake. Biomaterials 2002, 23:1553-61.

Boisseau, P, Loubaton, B, "Nanomedicine, nanotechnology in medicine". Comptes Rendus Physique .2011;12 (7):620.

Nanospectra Biosciences, Inc. - Publications

Mozafari, M.R.(ed), Nanocarrier Technologies: Frontiers of Nanotherapy. 2006;(Chapters 1 and 2):10-11, 25-34.

Bertrand N, Bouvet C, Moreau P and Leroux JC. "Transmembrane pH-Gradient Liposomes To Treat Cardiovascular Drug Intoxication". ACS Nano 2010;4(12):7552-8.

La Van DA, Mc Guire T, Langer R. Small scale systems for in vivo drug delivery. Nat Biotechnol 2003; 21:1184-91.

Cavalcanti A, Shirinzadeh B, Freitas RA Jr, Hogg T. "Nanorobot architecture for medical target identification". Nanotechnology 2008;19(1): 015103(15pp).

University of Waterloo, Nanotechnology in Targeted Cancer Therapy, 15 January 2010.

Allen TM, Cullis PR. "Drug Delivery Systems: Entering the Mainstream". Science. 2004;303 (5665):1818-22.

Bertrand N, Leroux JC. "The journey of a drug carrier in the body: an anatomo-physiological perspective". Journal of Controlled Release. (2011).

Nagy ZK, Zsombor K.; Balogh A, Vajna B, Farkas A, Patyi G, Kramarics A, Marosi G. "Comparison of Electrospun and Extruded Soluplus-Based Solid Dosage Forms of Improved Dissolution". Journal of Pharmaceutical Sciences: (2011).

Cao YC, Jin R, Nam JM, Thaxton CS, Mirkin CA. Raman dyelabeled nanoparticle probes for proteins. JACS 2003, 125:14676-7.

Walling MA, Novak, sephard. Quantu Dots for live cell & in vivo imaging. Int J Mol Sci. 2009;10(2): 441-91.

Zheng G, Patolsky F, Cui Y, Wang WU, Lieber CM. "Multiplexed electrical detection of cancer markers with nanowire sensor arrays". Nat Biotechnol 2005;23(10):1294-1301.

Loo C, Lin A, Hirsch L, Lee MH, Barton J, Halas N, West J, Drezek R. "Nanoshell-enabled photonics-based imaging and therapy of cancer". Technol Cancer Res Treat 2004;3(1):33-40.

Mah C, Zolotukhin I, Fraites TJ, Dobson J, Batich C, Byrne BJ. Microsphere-mediated delivery of recombinant AAV vectors in vitro and in vivo. Mol Therapy 2000,1:S239.

Panatarotto D, Prtidos CD, Hoebeke J, Brown F, Kramer E, Briand JP, Muller S, Prato M, Bianco A. Immunization with peptide-functionalized carbon nanotubes enhances virus-specific neutralizing antibody responses. Chemistry & Biology 2003;10:961-6.

Doshi N, Mitragotri S. Designer biomaterials for nano medicine. Adv Funct Mater 2009;19:3843-54.

Gould P. Nano particles probe biosystem. Mater Today. 2004; 7: 36-43.

Portney NG et al. Organic & inorganic nanoparticles hybrid. Langmuir: Acs J Surf Colloids.2005; 21: 2098-2103.

Fernando H etal. The application of nanoparticles in genetherapy & MRI. Microsc. Res Tech.2011; 74(7):577-591.

Xu L., Frederik P. and Pirollo K.F., “Self-Assembly of A Virus-Mimicking Nanostructure System for Efficient Tumour-Targeted Gene Delivery”, Hum. Gene Ther. 2002;13: 469-481.

Liu G., Li D., Pasumarthy M.K., et al., “Nanoparticles of Compacted DNA Transfect Postmitotic Cells”. J Biol Chem 2003;278:32578-32586.

Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes. J Magn Magn Mater 1999;194:176-84.

Shinkai M, Yanase M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T. Intracellular hyperthermia for cancer using magnetite cationic liposomes: in vitro study. Jpn J Cancer Res 1996;87:1179-83.

Stauffer PR, Cetas TC, Jones RC: System for producing localized hyperthermia in tumors through magnetic induction heating of ferromagnetic implants. Natl Cancer Inst Monogr 1982;61:483-487.

Brezovich IA, Atkinson WJ, Lilly MB: Local hyperthermia with interstitial techniques. Cancer Res .1984;44(Suppl 10):4752s-4756s.

Ikeda N, Hayashida O, Kameda H, Ito H, Matsuda T: Experimental study on thermal damage to dog normal brain. Int J Hyperthermia 1994, 10:553-561.

Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T: Intracellular hyperthermia for cancer using magnetite cationic liposomes: ex vivo study. Jpn J Cancer Res 1997; 88:630-632.

Yanase M, Shinkai M, Honda H, Wakabayashi T, Yoshida J, Kobayashi T: Intracellular hyperthermia for cancer using magnetite cationic liposomes: an in vivo study. Jpn J Cancer Res 1998; 89:463-469.

Parak WJ, Boudreau R, Gros ML, Gerion D, Zanchet D, Micheel CM, Williams SC, Alivisatos AP, Larabell CA: Cell motility and metastatic potential studies based on quantum dot imaging of phagokinetic tracks. Adv Mater 2002; 14:882-885.

Ma J, Wong H, Kong LB, Peng KW: Biomimetic processing of nanocrystallite bioactive apatite coating on titanium. Nanotechnology 2003; 14:619-623.

de la Isla A, Brostow W, Bujard B, Estevez M, Rodriguez JR, Vargas S, Castano VM: Nanohybrid scratch resistant coating for teeth and bone viscoelasticity manifested in tribology. Mat Resr Innovat 2003; 7:110-114.

Gutwein LG, Webster TJ. Affects of alumina and titania nanoparticulates on bone cell function. American Ceramic Society 26th Annual Meeting Conference Proceedings 2003, in press.

Roy I, Ohulchanskyy TY, Pudavar HE, Bergey EJ, Oseroff AR, Morgan J, Dougherty TJ, Prasad PN: Ceramic-based nanoparticles entrapping water-insoluble photosensitizing anticancer drugs: a novel drug-carrier system for photodynamic therapy. J Am Chem Soc 2003; 125:7860-7865.

Mahtab R, Rogers JP, Murphy CJ: Protein-sized quantum dot luminescence can distinguish between "straight", "bent", and "kinked" oligonucleotides. J Am Chem Soc 1995; 117:9099-9100.

Chan WCW, Nie SM. Quantum dot bioconjugates for ultrasensitive nonisotopic detection. Science 1998; 281:2016-8.

Molday RS, MacKenzie D. Immunospecific ferromagnetic iron dextran reagents for the labeling and magnetic separation of cells. J Immunol Methods 1982;52:353-67.




How to Cite

Jena, M., Mishra, S., Jena, S., & Mishra, S. S. (2017). Nanotechnology- future prospect in recent medicine: a review. International Journal of Basic & Clinical Pharmacology, 2(4), 353–359. Retrieved from



Review Articles