DOI: http://dx.doi.org/10.18203/2319-2003.ijbcp20170312

The pathophysiological role of serotonin receptor systems in opioid analgesia and tolerance

Ercan Ozdemir

Abstract


Continuous treatment with opioid analgesics, such as morphine, leads to the development of ant nociceptive tolerance in patients. Although a lot of information about antinociceptive, the pathophysiological mechanisms of tolerance to opioid analgesia are not yet completely understood. Proposed mechanisms for opioid analgesic tolerance comprise down-regulation of opioid receptors, reduction of sensitivity G-proteins, altered intracellular signalling pathway including nitric oxide, adenyl cyclase, and protein kinase C. Numerous physiological and behavioural studies have shown an interaction of the serotonergic system and opioid antinociception. The serotonin (5-HT) receptor system is a necessary component of the spinal and midbrain pain modulation circuit mediating opioid analgesia. Various types of serotonin receptors demonstrate different effects on morphine analgesia. Systemic administration of opioids rise 5-HT levels in the spinal cord dorsal horn and contribute to opioid analgesia in the normal state but reduce that in neuropathic pain via spinal 5-HT3 receptors. Spinal and supraspinal serotonergic neurons may also play a pathophysiological role in the development of morphine analgesic tolerance. Serotonin receptor subtypes show different effects on opioid tolerance. This review paper focus on the current understanding of the role of serotonin receptor systems in opioid analgesia and tolerance.


Keywords


Opioid receptors, Opioid tolerance, Serotonin receptors, Serotonin analgesia, Tolerance mechanism

Full Text:

PDF

References


Morgan MM, Christie MJ. Analysis of opioid efficacy, tolerance, addiction and dependence from cell culture to human. Br J Pharmacol. 2011;164:1322-34.

Dumas EO, Pollack GM. Opioid tolerance development: a pharmacokinetic /pharmacodynamic perspective. The AAPS Journal. 2008;10(4):537-51.

Cox BM. Drug tolerance and physical dependence; in Wall PD, Taylor P (eds): Principles of Drug Action: The Basis of Pharmacology. New York, Churchill-Livingstone, 1990:639-690.

Foley K. Changing concepts of tolerance to opioids: what the cancer patient has taught us. In C. R.Chapman and K. M. Foley (Eds.), Current and emerging issues in cancer pain: research and practice. New York: Raven Press; 1993:331-350.

Nestler EJ, Aghajanian GK. Molecular and cellular basis of addiction. Science 1997;278:58-63.

Vanderah TW, Suenaga NM, Ossipov MH, Malan TP, Lai J, Porreca F. Tonic descending facilitation from the rostral ventromedial medulla mediates opioid-induced abnormal pain and antinociceptive tolerance. J Neurosci. 2001;21:279-86.

Burgess SE, Gardell LR, Ossipov MH, Malan TP, Vanderah TW, Lai J, et al. Time-dependent descending facilitation from the rostral ventromedial medulla maintains, but does not initiate, neuropathic pain. J Neurosci. 2002;22:5129-36.

Ozdemir E, Bagcivan I, Durmus N, Altun A, Gursoy S. The nitric oxide–cGMP signaling pathway plays a significant role in tolerance to the analgesic effect of morphine. Can J Physiol Pharmacol. 2011a;89:89-95.

Durmus N, Bagcivan I, Ozdemir E, Altun A, Gursoy S. Soluble guanylyl cyclase activators increase the expression of tolerance to morphine analgesic effect. Bratisl Lek Listy. 2014;115(6):334-9.

Williams JT, Christie MJ, Manzoni O. Cellular and synaptic adaptations mediating opioid dependence. Physiol Rev. 2001;81:299-343.

Xin L, Geller EB, Liu-Chen LY, Chen C, Adler MW. Substance P release in the rat periaqueductal gray and preoptic anterior hypothalamus after noxious cold stimulation: effect of selective mu and kappa opioid agonists. J Pharmacol Exp Ther. 1997;282:1055-63.

Gardell LR, Wang R, Burgess SE. Sustained morphine exposure induces a spinal dynorphin-dependent enhancement of excitatory transmitter release from primary afferent fibers. J Neurosci. 2002;22:6747-55.

Wong CS, Hsu MM, Chou R, Chou YY, Tung CS. Intrathecal cyclooxygenase inhibitor administration attenuates morphine antinociceptive tolerance in rats. Br J Anaesth. 2000;85(5):747-51.

Ozdemir E, Bagcivan I, Gursoy S. Modulation of morphine analgesia and tolerance in rats by NMDA receptor antagonists. Neurophysiology. 2012;44:123-30.

Kellstein DE, Mayer DJ. Spinal co-administration of cholecystokinin antagonists with morphine prevents the development of opioid tolerance. Pain. 1991;47:221-9.

Ozdemir E, Bagcivan I, Gursoy S, Altun A, Durmus N. Effects of fluoxetine and LY 365265 on tolerance to the analgesic effect of morphine in rats. Acta Physiologica Hungarica. 2011;98(2):205-13.

Ozdemir E, Gursoy S, Bagcivan S. The effects of serotonin/norepinephrine reuptake inhibitors and serotonin receptor agonist on morphine analgesia and tolerance in rats. Journal of Physiological Science. 2012;62:317-23.

Zhang ZH, Yang SW, Chen JY. Interaction of serotonin and norepinephrine in spinal antinociception. Brain Res Bull. 1995;38:167-71.

Yaksh TL, Wilson R. Spinal serotonin terminal system mediates antinociception. J Pharmacol Exp Ther. 1979;208:446-53.

Schul R, Frenk H. The role of serotonin in analgesia elicited by morphine in the periaqueductal gray matter. Brain Res. 1991;556:353-7.

Grauer SM, Tao R, Auerbask SB. Morphine induces an increase in extracellular serotonin in the rat diencephalon. Brain Res. 1992;599:277-82.

Tao R, Ma Z, Auerbach SB. Alteration in regulation of serotonin release in rat dorsal raphe nucleus after prolonged exposure to morphine. J Pharmacol Exp Ther. 1998;286:481-8.

Nayebi ARM, Charkhpour M. Role of 5-HT1A and 5-HT2 receptors of dorsal and median raphe nucleus in tolerance to morphine analgesia in rats. Pharmacol Biochem Behav. 2006;83:203-7.

Li JY, Wong CH, Huang EY, Lin YC, Chen YL, Tan PP, et al. Modulations of spinal serotonin activity affect the development of morphine tolerance. Anesth Analg. 2001;92:1563-68.

Charkhpour M, Nayebi ARM, Doustar Y, Hassanzadeh K. 8-OH-DPAT prevents morphine-induced apoptosis in rat dorsal raphe nucleus: a possible mechanism for attenuating morphine tolerance. Anesth Analg. 2010;111:1316-21.

Janecka A, Fichna J, Janecki T. Opioid receptors and their ligands. Curr Top Med Chem. 2004;4(1):1-17.

Bodnar RJ. Endogenous opiates and behavior: 2013. Peptides. 2014;62:67-136.

Mollereau C, Parmentier M, Mailleux P. ORL1, a novel member of the opioid receptor family: cloning, functional expression and localization. FEBS Lett. 1994;341(1):33-8.

Stein C, Schäfer M, Machelska H. Attacking pain at its source: new perspectives on opioids. Nat Med. 2003;9(8):1003-8.

Waldhoer M, Bartlett SE, Whistler JL. Opioid receptors. Annu Rev Biochem. 2004;73:953-90.

Garzon J, Jen M, Sanchez-Blazquez P, Lee N. Dynorphin (1–13), a long-lasting inhibitor of opiate receptor binding in vitro. Life Sci. 1982;31:1789-92.

Ananthan S. Opioid ligands with mixed mu/delta opioid receptor interactions: an emerging approach to novel analgesics. AAPS J. 2006;8(1):E118-25.

Gackenheimer SL, Suter TM, Pintar JE. Localization of opioid receptor antagonist [3H]-LY255582 binding sites in mouse brain: comparison with the distribution of mu, delta and kappa binding sites. Neuropeptides. 2005;39(6):559-67.

Pasternak GW. Opioids and their receptors: Are we there yet? Neuropharmacology. 2014;76:198-203.

Hack SP, Vaughan CW, Christie MJ. Modulation of GABA release during morphine withdrawal in midbrain neurons in vitro. Neuropharmacology. 2003;45:575-84.

Vella-Brincat J, Macleod AD. Adverse effects of opioids on the central nervous systems of palliative care patients. J Pain Palliat Care Pharmacother. 2007;21(1):15-25.

Feng Y, He X, Yang Y, Chao D, Lazarus LH, Xia Y. Current research on opioid receptor function. Curr Drug Targets. 2012;13(2):230-46.

Mogil JS, Grisel JE. Transgenic studies of pain. Pain. 1998;77:107-28.

Akil H, Owens C, Gutstein H, Taylor L, Curran E, Watson S. Endogenous opioids: overview and current issues. Drug Alcohol Depend. 1998;51(1-2):127-40.

Lutz PE, Kieffer BL. Opioid receptors: distinct roles in mood disorders. Trends Neurosci. 2013;36(3):195-206.

Lawrence DM, Bidlack JM. The kappa opioid receptor expressed on the mouse R1.1 thymoma cell line is coupled to adenylyl cyclase through a pertussis toxin-sensitive guanine nucleotide-binding regulatory protein. J Pharmacol Exp Ther. 1993;266(3):1678-83.

Wadenberg ML. A review of the properties of spiradoline: a potent and selective kappa-opioid receptor agonist. CNS Drug Rev. 2003;9:187-98.

Walsh SL, Strain EC, Abreu ME, Bigelow GE, Wadenberg ML. Enado line, a selective kappa opioid agonist: comparison with butorphanol and hydromorphone in humans, a review of the properties of spiradoline: a potent and selective kappa-opioid receptor agonist. Psychopharmacology (Berl). 2001;157:151-62.

Bie B, Pan ZZ. Presynaptic mechanism for anti-analgesic and anti-hyperalgesic actions of kappa-opioid receptors. J Neurosci. 2003;13:23(19):7262-8.

Toll L, MR Bruchas, G Calo, BM Cox, NT Zaveri. Nociceptin/orphanin FQ receptor structure, signaling, ligands, functions, and interactions with opioid systems. Pharmacol Rev. 2016;68(2):419-57.

Pan Z, Hirakawa N, Fields HL. A cellular mechanism for the bidirectional pain-modulating actions of orphanin FQ/nociceptin. Neuron. 2000;26:515-22.

Collin E, Poulain P, Gauvain-Piquard A, Petit G, Pichard-Leandri E. Is disease progression the major factor in morphine “tolerance” in cancer pain treatment? Pain. 1993;55:319-26.

Dang VC, Christie MJ. Mechanisms of rapid opioid receptor desensitization, resensitization and tolerance in brain neurons. Br J Pharmacol. 2012;165(6):1704-16.

Raehal KM, Bohn LM. Mu opioid receptor regulation and opiate responsiveness. AAPS Journal. 2005;7:E587-91.

Wang HY, Friedman E, Olmstead MC, Burns LH. Ultra-low-dose naloxone suppresses opioid tolerance, dependence and associated changes in mu opioid receptor–G protein coupling and G beta gamma signaling. Neuroscience. 2005;135;247-61.

Sim LJ, Selley DE, Dworkin SI, Childers SR. Effects of chronic morphine administration on mu opioid receptor–stimulated [35S] GTP gammaS autoradiography in rat brain. Journal of Neuroscience. 1996;16:2684-92.

Chen Y, Sommer C. The role of mitogen-activated protein kinase (MAPK) in morphine tolerance and dependence. Mol Neurobiol. 2009;40:101-7.

Bohn LM, Lefkowitz RJ, Caron MG. Differential mechanisms of morphine antinociceptive tolerance revealed in (beta) arrestin-2 knock-out mice. Journal of Neuroscience. 2002;22:10494-500.

Finn AK, Whistler JL. Endocytosis of the mu opioid receptor reduces tolerance and a cellular hallmark of opiate withdrawal. Neuron. 2001;32:829-39.

Sim-Selley LJ, Selley DE, Vogt LJ, Childers SR, Martin TJ. Chronic heroin self-administration desensitizes mu opioid receptor–activated G-proteins inspecific regions of rat brain. Journal of Neuroscience. 2000;20:4555-62.

Mercadante S. Opioid rotation for cancer pain: rationale and clinical aspects. Cancer. 1999;86:1856-66.

Duttaroy A, Yoburn BC. The effect of intrinsic efficacy on opioid tolerance. Anesthesiology. 1995;82:1226-36.

Sosnowski M, Yaksh TL. Differential crosstolerance between intrathecal morphine and sufentanil in the rat. Anesthesiology. 1990;73:1141-47.

Saeki S, Yaksh TL. Suppression of nociceptive responses by spinal mu opioid agonists: effects of stimulus intensity and agonist efficacy. Anesthesia & Analgesia. 1993;77:265-74.

Terman GW, Jin W, Cheong YP. G-Protein receptor kinase 3 (GRK3) influences opioid analgesic tolerance but not opioid withdrawal. British Journal of Pharmacology. 2004;141:55-64.

Lin SH, Huang YN, Kao JH, Tien LT, Tsai RY, Wong CS. Melatonin reverses morphine tolerance by inhibiting microglia activation and HSP27 expression. Life Sci. 2016;152:38-43.

Ghaemi-Jandabi M, Azizi H, Semnanian S. Blockade of orexin type 1 receptors inhibits the development of morphine tolerance in lateral paragiganto-cellularis nucleus: an electrophysiological approach. Brain Res. 2014;1578:14-22.

Cooper JR, Bloom FE, Roth RH. The Biochemical Basis of Neuropharmacology, 8th ed. Oxford University Press, New York, USA; 2003:338-344.

Nichols DE, Nichols CD. Serotonin receptors. Chem Rev. 2008;108(5):1614-41.

Hoyer D, Clarke DE, Fozard JR. International Union of Pharmacology classification of receptors for 5-hydroxytryptamine (Serotonin). Pharmacol Rev. 1994;46:157-203.

Björk K, Sjögren B, Svenningsson P. Regulation of serotonin receptor function in the nervous system by lipid rafts and adaptor proteins. Experimental Cell Research. 2010;316:1351-6.

Hannon J, Hoyer D. Serotonin receptors and systems: endless diversity? Acta Biol Szeged. 2002;46(1-2):1-12.

Barnes NM, Sharp T. A review of central 5-HT receptors and their function. Neuropharmacology. 1999;38:1083-152.

Hoyer D, Hannon JP, Martin GR. Molecular, pharmacological and functional diversity of 5-HT receptors. Pharmacol Biochem Behav. 2002;71:533-54.

Palacios JM, Waeber C, Hoyer D, Mengod G. Distribution of serotonin receptors. Ann NY Acad Sci. 1990;600:36-52.

Hornung JP. The human raphe nuclei and the serotonergic system. J Chem Neuroanat. 2003;26:331-43.

Jacobs BL, Azmitia EC. Structure and function of the brain serotonin system. Physiol Rev. 1992;72(1):165-229.

Zhao ZQ, Gao YJ, Sun YG, Zhao CS, Gereau RW, Chen ZF. Central serotonergic neurons are differentially required for opioid analgesia but not for morphine tolerance or morphine reward. PNAS. 2007;104(36):14519-24.

Fields HL, Basbaum AI, Heinricher MH. Central nervous system mechanisms of pain modulation. In: McMahon SB, Koltzenburg M (eds). Wall and Melzack's textbook of pain. 5th ed. Elsevier, China; 2006:125-42.

Lopez-Garcia JA. Serotonergic modulation of spinal sensory circuits. Curr Top Med Chem. 2006;6:1987-96.

Millan MJ. Descending control of pain. Prog Neurobiol. 2002;66:355-474.

Hains BC, Willis WD, Hulsebosch CE. Serotonin receptors 5-HT1A and 5-HT3 reduce hyperexcitability of dorsal horn neurons after chronic spinal cord hemisection injury in rat. Exp Brain Res. 2003;149:174-86.

Rocha-Gonzalez HI, Meneses A, Carlton SM, Granados-Soto V. Pronociceptive role of peripheral and spinal 5-HT7 receptors in the formalin test. Pain. 2005;117:182-92.

Zhang Y, Yang Z, Gao X, Wu G. The role of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptors in modulating spinal nociceptive transmission in normal and carrageenan-injected rats. Pain. 2001;92:201-11.

Sasaki M, Obata H, Saito S, Goto F. Antinociception with intrathecal alpha-methyl-5-hydroxytryptamine, a 5-hydroxytryptamine 2A/2C receptor agonist, in two rat models of sustained pain. Anesth Analg. 2003;96:1072-78.

Suzuki R, Rahman W, Hunt SP, Dickenson AH. Descending facilitatory control of mechanically evoked responses is enhanced in deep dorsal horn neurone following peripheral nerve injury. Brain Res. 2004;1019:68-76.

Jeong CY, Choi JI, Yoon MH. Roles of serotonin receptor subtypes for the antinociception of 5-HT in the spinal cord of rats. Eur J Pharmacol. 2004;502:205-11.

Wang QP, Nakai Y. The dorsal raphe: an important nucleus in pain modulation. Brain Res Bull. 1994;34:575-85.

Qu CL, Huo FQ, Huang FS, Li YQ, Tang JS, Jia H. The role of 5-HT receptor subtypes in the ventrolateral orbital cortex of 5-HT-induced antinociception in the rat. Neuroscience. 2008;152:487-94.

Mickle A, Kannampalli P, Bruckert M, Miranda A, Banerjee B, Sengupta JN. Pronociceptive effect of 5-HT(1A) receptor agonist on visceral pain involves spinal N-methyl-D-aspartate (NMDA) receptor. Neuroscience. 2012;219:243-54.

Sasaki M, Ishizaki K, Obata H, Goto F. Effects of 5-HT2 and 5-HT3 receptors on the modulation of nociceptive transmission in rat spinal cord according to the formalin test. Eur J Pharmacol. 2001;424:45-52.

Bonnefont J, Chapuy E, Clottes E, Alloui A, Eschalier A. Spinal 5-HT1A receptors differentially influence nociceptive processing according to the nature of the noxious stimulus in rats: effect of WAY-100635 on the antinociceptive activities of paracetamol, venlafaxine and 5-HT. Pain. 2005;114:482-90.

Bardin L, Colpaert FC. Role of spinal 5-HT(1A) receptors in morphine analgesia and tolerance in rats. Eur J Pain. 2004;8:253-61.

Tamano R, Ishida M, Asaki T, Hasegawa M, Shinohara S. Effect of spinal monoaminergic neuronal system dysfunction on pain threshold in rats, and the analgesic effect of serotonin and norepinephrine reuptake inhibitors. Neurosci Lett. 2016;615:78-82.

Almeida-Santos AF, Ferreira RC, Duarte ID, Aguiar DC, Romero TR, Moreira FA. The antipsychotic aripiprazole induces antinociceptive effects: Possible role of peripheral dopamine D2 and serotonin 5-HT1A receptors. Eur J Pharmacol. 2015;765:300-6.

Sengupta JN, Mickle A, Kannampalli P, Spruell R, McRorie J, Shaker R, et al. Visceral analgesic effect of 5-HT(4) receptor agonist in rats involves the rostroventral medulla (RVM). Neuropharmacology. 2014;79:345-58.

Sun YH, Li HS, Zhu C, Hu W, Yang J, Zhao GL, et al. The analgesia effect of duloxetine on post-operative pain via intrathecal or intraperitoneal administration. Neurosci Lett. 2014;568:6-11.

Dam LJ, Hai L, Ha YM. Role of the 5-HT(7) receptor in the effects of intrathecal nefopam in neuropathic pain in rats. Neurosci Lett. 2014;566:50-4.

Muñoz-Islas E, Vidal-Cantú GC, Bravo-Hernández M, et al. Spinal 5-HT₅A receptors mediate 5-HT-induced antinociception in several pain models in rats. Pharmacol. Biochem Behav. 2014;120:25-32.

Fields H. State-dependent opioid control of pain. Nat Rev Neurosci. 2004;5:565-75.

Sounvoravong S, Nakashima MN, Wada M, Nakashima K. Decrease in serotonin concentration in raphe magnus nucleus and attenuation of morphine analgesia in two mice models of neuropathic pain. Eur J Pharmacol. 2004;484:217-23.

Wittmann M, Peters I, Schaaf T, Wartenberg HC, Wirz S, Nadstawek J, et al. The effects of morphine on human 5-HT3A receptors. Anesth Analg. 2006;103:747-52.

Dogrul A, Seyrek M. Systemic morphine produce antinociception mediated by spinal 5-HT7, but not 5-HT1A and 5-HT2 receptors in the spinal cord. Br. J. Pharmacol. 2006;149:498-505.

Nemmani KV, Mogil JS. Serotonin-GABA interactions in the modulation of mu- and kappa-opioid analgesia. Neuropharmacology. 2003;44:304-10.

Jolas T, Aghajanian GK. Opioids suppress spontaneous and NMDA-induced inhibitory postsynaptic currents in the dorsal raphe nucleus of the rat in vitro. Brain Res. 1997;755:229-45.

Jolas T, Nestler EJ, Aghajanian GK. Chronic morphine increases GABA tone on serotonergic neurons of the dorsal raphe nucleus: association with an up-regulation of the cyclic AMP pathway. Neurosciences. 2000;95:433-43.

Sawynok J. The role of ascending and descending noradrenergic and serotonergic pathways in opioid and non-opioid antinociception as revealed by lesion studies. Can J Physiol Pharmacol. 1989;67:975-88.

Marinelli S, Schnell SA, Hack SP, Christie MJ, Wessendorf MW, Vaughan CW. Serotonergic and nonserotonergic dorsal raphe neurons are pharmacologically and electrophysiologically heterogeneous. J Neurophysiol. 2004;92(6):3532-7.

Zhao ZQ, S Chiechio, YG Sun. Mice lacking central serotonergic neurons show enhanced inflammatory pain and an impaired analgesic response to antidepressant drugs. J Neurosci. 2007;27:6045-53.

Berrocoso E, De Benito MD, Mico JA. Role of serotonin 5-HT1A and opioid receptors in the antiallodynic effect of tramadol in the chronic constriction injury model of neuropathic pain in rats. Psychopharmacology (Berl.) 2007;193:97-105.

Tao R, Ma Z, Auerbach SB. Influence of AMPA/kainate receptors on extracellular 5-hydroxytryptamine in rat midbrain raphe and forebrain. Br J Pharmacol. 1997;121:1707-15.

Tao R, Auerbach SB. Increased extracellular serotonin in rat brain after systemic or intraraphe administration of morphine. J Neurochem. 1994;63:517-24.

Alhaider AA, Wilcox GL. Differential roles of 5-hydroxytryptamine1A and 5-hydroxytryptamine1B receptor subtypes in modulating spinal nociceptive transmission in mice. J Pharmacol Exp Ther. 1993;265:378-85.

Xu W, Cui X, Han JS. Spinal serotonin IA and IC/2 receptors mediate supraspinal mu opioid-induced analgesia. Neuroreport. 1994;5:2665-8.

Kimura M, Obata H, Saito S. Peripheral nerve injury reduces analgesic effects of systemic morphine via spinal 5-hydroxytryptamine 3 receptors. Anesthesiology. 2014;121(2):362-71.

Yesilyurt O, Seyrek M, Tasdemir S, Kahraman S, Deveci MS, Karakus E. The critical role of spinal 5-HT7 receptors in opioid and non-opioid type stress-induced analgesia. Eur J Pharmacol. 2015;762:402-10.

Kosiorek-Witek A, Makulska-Nowak HE. Morphine analgesia modification in normotensive and hypertensive female rats after repeated fluoxetine administration. Basic Clin Pharmacol Toxicol. 2016;118(1):45-52.

Brenchat A, Ejarque M, Zamanillo D, Vela JM, Romero L. Potentiation of morphine analgesia by adjuvant activation of 5-HT7 receptors. J Pharmacol Sci. 2011;116(4):388-91.

Shahidi S, Hashemi-Firouzi N. The effects of a 5-HT7 receptor agonist and antagonist on morphine withdrawal syndrome in mice. Neurosci Lett. 2014;578:27-32.

Pettersen VLA, Zapata-Sudo G, Raimundo JM, Trachez MM, Sudo RT. The synergistic interaction between morphine and maprotiline after intrathecal injection in rats. Anesth Analg. 2009;109:1312-7.

Ozdemir E, Gursoy S, Bagcivan I, Durmus N, Altun A. Zimelidine attenuates the development of tolerance to morphine-induced antinociception. Indian Journal of Pharmacology. 2012;44(2):215-8.

Contreras E, Tamayo L, Quijada L. Decrease of tolerance development to morphine by 5-hydroxytryptophan and some related drugs. Eur J Pharmacol. 1973;22:339-43.

Liang DY, Li XQ, Clark JD. 5-hydroxytryptamine type 3 receptor modulates opioid- induced hyperalgesia and tolerance in mice. Anesthesiology. 2011;114(5):1180-9.

Nayebi AM, Rezazadeh H, Nourafkan M. Buspirone attenuates tolerance to analgesic effect of morphine in mice with skin cancer. Pak J Pharm Sci. 2010;23(2):201-6.

Lopez-Gimenez JF, Vilaro MT, Milligan G. Morphine desensitization, internalization, and down-regulation of the opioid receptor is facilitated by serotonin 5-hydroxytryptamine receptor coactivation. Mol Pharmacol. 2008;74:1278-91.