Knee osteoarthritis - a pathological basis for use of newer drug therapies
Keywords:
Knee osteoarthritis, Pathological targets, Newer drugsAbstract
Knee osteoarthritis (OA) is a disease of the whole knee joint occurring due to an interaction between inflammatory, hypoxic, and mechanical pathways. Initial management includes monotherapy with analgesics or anti‑inflammatory agents, eventually switching over to combination therapy with steroids and/or newer drugs. Cardiovascular risks associated with non‑steroidal anti‑inflammatory drugs (NSAIDs) limit their long term use. Hence, novel target receptors or pathways, which remain unaffected by conventional therapy and modify disease are being increasingly looked for. Newer drugs such as glucosamine, chondroitin, methylsulfonylmethane, diacerein along with vitamins/minerals are commonly used as adjuncts to NSAIDs or as monotherapy. Because of their novel mechanisms of action and better safety profile they seem to be promising as disease modifying agents in the treatment of OA. Google, PubMed, Cochrane databases and Science Direct search was performed, and relevant articles were identified. This review focuses on the pathological targets which these drugs modify in order to bring about a symptom modifying effect.
References
Abramson SB, Attur M. Developments in the scientific understanding of osteoarthritis. Arthritis Res Ther. 2009;11(3):227.
Loeser RF. Molecular mechanisms of cartilage destruction: mechanics, inflammatory mediators, and aging collide. Arthritis Rheum. 2006;54(5):1357 60.
Saxne T, Lindell M, Månsson B, Petersson IF, Heinegård D. Inflammation is a feature of the disease process in early knee joint osteoarthritis. Rheumatology (Oxford). 2003;42(7):903 4.
Benito MJ, Veale DJ, FitzGerald O, van den Berg WB, Bresnihan B. Synovial tissue inflammation in early and late osteoarthritis. Ann Rheum Dis. 2005;64(9):1263 7.
Loeuille D, Chary Valckenaere I, Champigneulle J, Rat AC, Toussaint F, Pinzano Watrin A, et al. Macroscopic and microscopic features of synovial membrane inflammation in the osteoarthritic knee: correlating magnetic resonance imaging findings with disease severity. Arthritis Rheum. 2005;52(11):3492 501.
Haseeb A, Haqqi TM. Immunopathogenesis of osteoarthritis. Clin Immunol. 2013;146(3):185 96.
Du H, Masuko Hongo K, Nakamura H, Xiang Y, Bao CD, Wang XD, et al. The prevalence of autoantibodies against cartilage intermediate layer protein, YKL 39, osteopontin, and cyclic citrullinated peptide in patients with early stage knee osteoarthritis: evidence of a variety of autoimmune processes. Rheumatol Int. 2005;26:35 41.
Sharif M, Elson CJ, Dieppe PA, Kirwan JR. Elevated serum C reactive protein levels in osteoarthritis. Br J Rheumatol. 1997;36(1):140 1.
Pearle AD, Scanzello CR, George S, Mandl LA, DiCarlo EF, Peterson M, et al. Elevated high sensitivity C reactive protein levels are associated with local inflammatory findings in patients with osteoarthritis. Osteoarthritis Cartilage. 2007;15(5):516 23.
Stürmer T, Brenner H, Koenig W, Günther KP. Severity and extent of osteoarthritis and low grade systemic inflammation as assessed by high sensitivity C reactive protein. Ann Rheum Dis. 2004;63(2):200 5.
Pearle AD, Warren RF, Rodeo SA. Basic science of articular cartilage and osteoarthritis. Clin Sports Med. 2005;24(1):1 12.
Ge Z, Hu Y, Heng BC, Yang Z, Ouyang H, Lee EH, et al. Osteoarthritis and therapy. Arthritis Rheum. 2006;55(3):493 500.
Goldring MB, Otero M, Tsuchimochi K, Ijiri K, Li Y. Defining the roles of inflammatory and anabolic cytokines in cartilage metabolism. Ann Rheum Dis. 2008;67Suppl 3:iii75 82.
Goldring MB, Birkhead J, Sandell LJ, Kimura T, Krane SM. Interleukin 1 suppresses expression of cartilage specific types II and IX collagens and increases types I and III collagens in human chondrocytes. J Clin Invest 1988;82(6):2026 37.
Reginato AM, Sanz Rodriguez C, Diaz A, Dharmavaram RM, Jimenez SA. Transcriptional modulation of cartilage specific collagen gene expression by interferon gamma and tumour necrosis factor alpha in cultured human chondrocytes. Biochem J 1993;294(Pt 3):761 9.
Mauviel A. Cytokine regulation of metalloproteinase gene expression. J Cell Biochem. 1993;53(4):288 95.
Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, et al. Role of interleukin 1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 2005;52(1):128 35.
Goldring MB, Goldring SR. Osteoarthritis. J Cell Physiol. 2007;213(3):626 34.
Hutchison MR, Bassett MH, White PC. Insulin like growth factor I and fibroblast growth factor, but not growth hormone, affect growth plate chondrocyte proliferation. Endocrinology. 2007;148(7):3122 30.
Galasso O, De Gori M, Nocera A, Brunetti A, Gasparini G. Regulatory functions of insulin like growth factor binding proteins in osteoarthritis. Int J Immunopathol Pharmacol. 2011;241 Suppl 2:55 9.
Roberts AB, Sporn MB. Physiological actions and clinical applications of transforming growth factor beta (TGF beta). Growth Factors. 1993;8(1):1 9.
Finnson KW, Parker WL, Chi Y, Hoemann CD, Goldring MB, Antoniou J, et al. Endoglin differentially regulates TGF ß induced Smad2/3 and Smad1/5 signalling and its expression correlates with extracellular matrix production and cellular differentiation state in human chondrocytes. Osteoarthritis Cartilage. 2010;18(11):1518 27.
van der Kraan PM, Blaney Davidson EN, Blom A, van den Berg WB. TGF beta signaling in chondrocyte terminal differentiation and osteoarthritis: modulation and integration of signaling pathways through receptor Smads. Osteoarthritis Cartilage. 2009;17(2):1539 45.
Zoricic S, Maric I, Bobinac D, Vukicevic S. Expression of bone morphogenetic proteins and cartilage derived morphogenetic proteins during osteophyte formation in humans. J Anat. 2003;202(Pt 3):269 77.
Roman Blas JA, Stokes DG, Jimenez SA. Modulation of TGF beta signaling by proinflammatory cytokines in articular chondrocytes. Osteoarthritis Cartilage. 2007;15(12):1367 77.
Rengel Y, Ospelt C, Gay S. Proteinases in the joint: clinical relevance of proteinases in joint destruction. Arthritis Res Ther 2007;9(5):221.
Murphy G, Nagase H. Reappraising metalloproteinases in rheumatoid arthritis and osteoarthritis: destruction or repair? Nat Clin Pract Rheumatol. 2008;4(3):128 35.
Klein T, Bischoff R. Physiology and pathophysiology of matrix metalloproteases. Amino Acids. 2011;41(2):271 90.
Pelletier JP, Mineau F, Faure MP, Martel Pelletier J. Imbalance between the mechanisms of activation and inhibition of metalloproteases in the early lesions of experimental osteoarthritis. Arthritis Rheum. 1990;33(10):1466 76.
Martel Pelletier J, Pelletier JP, Malemud CJ. Activation of neutral metalloprotease in human osteoarthritic knee cartilage: evidence for degradation in the core protein of sulphated proteoglycan. Ann Rheum Dis. 1988;47(10):801 8.
Burrage PS, Mix KS, Brinckerhoff CE. Matrix metalloproteinases: role in arthritis. Front Biosci. 2006;11:529 43.
Fosang AJ, Rogerson FM, East CJ, Stanton H. ADAMTS 5: the story so far. Eur Cell Mater. 2008;15:11 26.
Samad TA, Moore KA, Sapirstein A, Billet S, Allchorne A, Poole S, et al. Interleukin 1beta mediated induction of Cox 2 in the CNS contributes to inflammatory pain hypersensitivity. Nature. 2001;410(6867):471 5.
Li TF, Zuscik MJ, Ionescu AM, Zhang X, Rosier RN, Schwarz EM, et al. PGE2 inhibits chondrocyte differentiation through PKA and PKC signaling. Exp Cell Res. 2004;300(1):159 69.
Brochhausen C, Neuland P, Kirkpatrick CJ, Nüsing RM, Klaus G. Cyclooxygenases and prostaglandin E2 receptors in growth plate chondrocytes in vitro and in situ – Prostaglandin E2 dependent proliferation of growth plate chondrocytes. Arthritis Res Ther. 2006;8(3):R78.
Notoya K, Jovanovic DV, Reboul P, Martel Pelletier J, Mineau F, Pelletier JP. The induction of cell death in human osteoarthritis chondrocytes by nitric oxide is related to the production of prostaglandin E2 via the induction of cyclooxygenase 2. J Immunol 2000;165(6):3402 10.
Reichenbach S, Guermazi A, Niu J, Neogi T, Hunter DJ, Roemer FW, et al. Prevalence of bone attrition on knee radiographs and MRI in a community based cohort. Osteoarthritis Cartilage. 2008;16(9):1005 10.
Messent EA, Ward RJ, Tonkin CJ, Buckland Wright C. Tibial cancellous bone changes in patients with knee osteoarthritis. A short term longitudinal study using Fractal Signature Analysis. Osteoarthritis Cartilage. 2005;13(6):463 70.
Hulejová H, Baresová V, Klézl Z, Polanská M, Adam M, Senolt L. Increased level of cytokines and matrix metalloproteinases in osteoarthritic subchondral bone. Cytokine. 2007;38(3):151 6.
Hunter DJ, Lo GH, Gale D, Grainger AJ, Guermazi A, Conaghan PG. The reliability of a new scoring system for knee osteoarthritis MRI and the validity of bone marrow lesion assessment: BLOKS (Boston Leeds Osteoarthritis Knee Score). Ann Rheum Dis. 2008;67(2):206 11.
Bonnet CS, Walsh DA. Osteoarthritis, angiogenesis and inflammation. Rheumatology (Oxford). 2005;44(1):7 16.
Ashraf S, Walsh DA. Angiogenesis in osteoarthritis. Curr Opin Rheumatol. 2008;20(5):573 80.
Findlay DM. Vascular pathology and osteoarthritis. Rheumatology (Oxford). 2007;46(12):1763 8.
Fiedler U, Reiss Y, Scharpfenecker M, Grunow V, Koidl S, Thurston G, et al. Angiopoietin 2 sensitizes endothelial cells to TNF alpha and has a crucial role in the induction of inflammation. Nat Med. 2006;12(2):235 9.
Walsh DA, Pearson CI. Angiogenesis in the pathogenesis of inflammatory joint and lung diseases. Arthritis Res. 2001;3(3):147 53.
Giatromanolaki A, Sivridis E, Maltezos E, Athanassou N, Papazoglou D, Gatter KC, et al. Upregulated hypoxia inducible factor 1alpha and 2alpha pathway in rheumatoid arthritis and osteoarthritis. Arthritis Res Ther. 2003;5(4):R193 201.
Tanaka E, Aoyama J, Miyauchi M, Takata T, Hanaoka K, Iwabe T, et al. Vascular endothelial growth factor plays an important autocrine/paracrine role in the progression of osteoarthritis. Histochem Cell Biol. 2005;123(3):275 81.
Henrotin Y, Kurz B, Aigner T. Oxygen and reactive oxygen species in cartilage degradation: friends or foes? Osteoarthritis Cartilage 2005;13(8):643 54.
Altindag O, Erel O, Aksoy N, Selek S, Celik H, Karaoglanoglu M. Increased oxidative stress and its relation with collagen metabolism in knee osteoarthritis. Rheumatol Int. 2007;27(4):339 44.
Henrotin YE, Bruckner P, Pujol JP. The role of reactive oxygen species in homeostasis and degradation of cartilage. Osteoarthritis Cartilage. 2003;11(10):747 55.
Hattori T, Müller C, Gebhard S, Bauer E, Pausch F, Schlund B, et al. SOX9 is a major negative regulator of cartilage vascularization, bone marrow formation and endochondral ossification. Development. 2010;137(6):901 11.
Uitterlinden EJ, Koevoet JL, Verkoelen CF, Bierma Zeinstra SM, Jahr H, Weinans H, et al. Glucosamine increases hyaluronic acid production in human osteoarthritic synovium explants. BMC Musculoskelet Disord 2008;9:120.
Sandy JD, Gamett D, Thompson V, Verscharen C. Chondrocyte mediated catabolism of aggrecan: aggrecanase dependent cleavage induced by interleukin 1 or retinoic acid can be inhibited by glucosamine. Biochem J 1998;335(Pt 1):59 66.
McCulloch DR, Wylie JD, Longpre JM, Leduc R, Apte SS. 10mM glucosamine prevents activation of proADAMTS5 (aggrecanase 2) in transfected cells by interference with post translational modification of furin. Osteoarthritis Cartilage. 2010;18(3):455 63.
Shikhman AR, Kuhn K, Alaaeddine N, Lotz M. N acetylglucosamine prevents IL 1 beta mediated activation of human chondrocytes. J Immunol. 2001;166(8):5155 60.
Valvason C, Musacchio E, Pozzuoli A, Ramonda R, Aldegheri R, Punzi L. Influence of glucosamine sulphate on oxidative stress in human osteoarthritic chondrocytes: effects on HO 1, p22(Phox) and iNOS expression. Rheumatology (Oxford). 2008;47(1):31 5.
Tat SK, Pelletier JP, Vergés J, Lajeunesse D, Montell E, Fahmi H, et al. Chondroitin and glucosamine sulfate in combination decrease the pro resorptive properties of human osteoarthritis subchondral bone osteoblasts: a basic science study. Arthritis Res Ther. 2007;9(6):R117.
David Raoudi M, Deschrevel B, Leclercq S, Galéra P, Boumediene K, Pujol JP. Chondroitin sulfate increases hyaluronan production by human synoviocytes through differential regulation of hyaluronan synthases: role of p38 and Akt. Arthritis Rheum. 2009;60(3):760 70.
Huskisson EC. Glucosamine and chondroitin for osteoarthritis. J Int Med Res 2008;36(6):1161 79.
Egea J, García AG, Verges J, Montell E, López MG. Antioxidant, antiinflammatory and neuroprotective actions of chondroitin sulfate and proteoglycans. Osteoarthritis Cartilage 2010;18Suppl 1:S24 7.
Brief AA, Maurer SG, Di Cesare PE. Use of glucosamine and chondroitin sulfate in the management of osteoarthritis. J Am Acad Orthop Surg. 2001;9(2):71 8.
Gerwin N, Hops C, Lucke A. Intraarticular drug delivery in osteoarthritis. Adv Drug Deliv Rev. 2006;58(2):226 42.
Campo GM, Avenoso A, Campo S, D’Ascola A, Traina P, Samà D, et al. Glycosaminoglycans modulate inflammation and apoptosis in LPS treated chondrocytes. J Cell Biochem. 2009;106(1):83 92.
Moore AR, Greenslade KJ, Alam CA, Willoughby DA. Effects of diacerhein on granuloma induced cartilage breakdown in the mouse. Osteoarthritis Cartilage. 1998;6(1):19 23.
Mendes AF, Caramona MM, de Carvalho AP, Lopes MC. Diacerhein and rhein prevent interleukin 1beta induced nuclear factor kappaB activation by inhibiting the degradation of inhibitor kappaB alpha. Pharmacol Toxicol. 2002;91:22 8.
Felisaz N, Boumediene K, Ghayor C, Herrouin JF, Bogdanowicz P, Galerra P, et al. Stimulating effect of diacerein on TGF beta1 and beta2 expression in articular chondrocytes cultured with and without interleukin 1. Osteoarthritis Cartilage. 1999;7:255 64.
Douni E, Sfikakis PP, Haralambous S, Fernandes P, Kollias G. Attenuation of inflammatory polyarthritis in TNF transgenic mice by diacerein: comparative analysis with dexamethasone, methotrexate and anti TNF protocols. Arthritis Res Ther. 2004;6(1):R65 72.
Solignac M. Mechanisms of action of diacerein, the first inhibitor of interleukin 1 in osteoarthritis. Presse Med. 2004;33(9 Pt 2):S10 2.
Boileau C, Tat SK, Pelletier JP, Cheng S, Martel Pelletier J. Diacerein inhibits the synthesis of resorptive enzymes and reduces osteoclastic differentiation/survival in osteoarthritic subchondral bone: a possible mechanism for a protective effect against subchondral bone remodelling. Arthritis Res Ther. 2008;10(3):R71.
Uitto VJ, Firth JD, Nip L, Golub LM. Doxycycline and chemically modified tetracyclines inhibit gelatinase A (MMP 2) gene expression in human skin keratinocytes. Ann N Y Acad Sci. 1994;732:140 51.
di Padova C. S adenosylmethionine in the treatment of osteoarthritis. Review of the clinical studies. Am J Med. 1987;83(5A):60 5.
Harmand MF, Vilamitjana J, Maloche E, Duphil R, Ducassou D. Effects of S adenosylmethionine on human articular chondrocyte differentiation. An in vitro study. Am J Med. 1987;83(5A):48 54.
Gualano M, Berti F, Stramentinoli G. Anti inflammatory activity of S adenosyl L methionine in animal models: possible interference with the eicosanoid system. Int J Tissue React. 1985;7(1):41 6.
Brien S, Prescott P, Lewith G. Meta analysis of the related nutritional supplements dimethyl sulfoxide and methylsulfonylmethane in the treatment of osteoarthritis of the knee. Evid Based Complement Alternat Med. 2011;2011:528403.
Lippiello L, Nardo JV, Harlan R, Chiou T. Metabolic effects of avocado/soy unsaponifiables on articular chondrocytes. Evid Based Complement Alternat Med. 2008;5(2):191 7.
Bouic PJ. The role of phytosterols and phytosterolins in immune modulation: a review of the past 10 years. Curr Opin Clin Nutr Metab Care 2001;4(6):471 5.
Ameye LG, Chee WS. Osteoarthritis and nutrition. From nutraceuticals to functional foods: a systematic review of the scientific evidence. Arthritis Res Ther. 2006;8(4):R127.
Hankenson KD, Watkins BA, Schoenlein IA, Allen KG, Turek JJ. Omega 3 fatty acids enhance ligament fibroblast collagen formation in association with changes in interleukin 6 production. Proc Soc Exp Biol Med. 2000;223(1):88 95.
Lippiello L, Fienhold M, Grandjean C. Metabolic and ultrastructural changes in articular cartilage of rats fed dietary supplements of omega 3 fatty acids. Arthritis Rheum. 1990;33(7):1029 36.
Curtis CL, Rees SG, Little CB, Flannery CR, Hughes CE, Wilson C, et al. Pathologic indicators of degradation and inflammation in human osteoarthritic cartilage are abrogated by exposure to n 3 fatty acids. Arthritis Rheum. 2002;46(6):1544 53.
Surapaneni KM, Venkataramana G. Status of lipid peroxidation, glutathione, ascorbic acid, vitamin E and antioxidant enzymes in patients with osteoarthritis. Indian J Med Sci. 2007;61(1):9 14.
Wang Y, Prentice LF, Vitetta L, Wluka AE, Cicuttini FM. The effect of nutritional supplements on osteoarthritis. Altern Med Rev. 2004;9(3):275 96.
Parfitt AM, Gallagher JC, Heaney RP, Johnston CC, Neer R, Whedon GD. Vitamin D and bone health in the elderly. Am J Clin Nutr. 1982;365 Suppl: 1014 31.
Sasaki S, Iwata H, Ishiguro N, Habuchi O, Miura T. Low selenium diet, bone, and articular cartilage in rats. Nutrition. 1994;10(6):538 43.
Seo HJ, Cho YE, Kim T, Shin HI, Kwun IS. Zinc may increase bone formation through stimulating cell proliferation, alkaline phosphatase activity and collagen synthesis in osteoblastic MC3T3 E1 cells. Nutr Res Pract. 2010;4(5):356 61.
Leach RM Jr. Role of manganese in mucopolysaccharide metabolism. Fed Proc. 1971;30(3):991 4.
Opsahl W, Zeronian H, Ellison M, Lewis D, Rucker RB, Riggins RS. Role of copper in collagen cross linking and its influence on selected mechanical properties of chick bone and tendon. J Nutr. 1982;112(4):708 16.
Reffitt DM, Ogston N, Jugdaohsingh R, Cheung HF, Evans BA, Thompson RP, et al. Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast like cells in vitro. Bone. 2003;32(2):127 35.
Newnham RE. The role of boron in human nutrition. J Appl Nutr 1994;46:81 5.
Nielsen FH. Is boron nutritionally relevant? Nutr Rev. 2008;66(4):183 91.
Newnham RE. Essentiality of boron for healthy bones and joints. Environ Health Perspect. 1994;102Suppl 7:83 5.