Effect of gliclazide on cardiovascular risk factors involved in split-dose streptozotocin induced neonatal rat model: a chronic study

I. Mohammed Salman, Md. Naseeruddin Inamdar


Background: The present study aimed at evaluating the effect of gliclazide on cardiovascular risk factors involved in type 2 diabetes mellitus using n-STZ rat model on a long term basis.

Methods: The diabetic model was developed using a split dose of streptozotocin (50 mg/kg) intraperitoneally on 2nd and 3rd postnatal days. The diabetic rats were treated orally with gliclazide suspension at the dose of 10 mg/kg for 90 days. Cardiovascular risk factors such as systolic blood pressure, heart rate, lipid profile, creatine kinase and lactate dehydrogenase were evaluated at regular intervals along with fasting blood glucose (FBG) and oral glucose tolerance test.

Results: Gliclazide did not alter FBG however improved the impaired glucose tolerance. The gliclazide treated rats did not develop hypertension and there was a significant difference (p<0.001) at the end of treatment when compared to the diabetic group which could be due to free radical scavenging property of gliclazide. Gliclazide treatment in n-STZ model was found to be effective in preventing hypertension, creatine kinase and lactate dehydrogenase activity. Also gliclazide was found to have beneficial effects on the impaired glucose tolerance, dyslipidaemia, adiposity index and total fat pad weight.

Conclusions: To improve and prevent the cardiovascular risk factors involved in Type II diabetic patients, gliclazide could be clinically beneficial.


n-STZ rat model, streptozotocin, gliclazide, diabetes, hypertension, cardiovascular risk factors

Full Text:



Chakrabarti R, Rajagopalan R. Diabetes and insulin resistance associated disorders: Disease and the therapy. Curr Sci 2002;83:1533-8.

Jennings PE. Vascular benefits of gliclazide beyond glycemic control. Metabolism 2000;49;17-20.

Riccio A, Lisato G, Vigili de Kreutzenberg, Marchetto S, Turrin M, Tiengo A, et al. Gliclazide potentiates suppression of hepatic glucose production in non-insulin-dependent diabetic patients. Metabolism 1996;45:1196-202.

O'Brien RC, Luo M, Balazs N, Mercuri J. In vitro and in vivo antioxidant properties of gliclazide. J Diabetes Complications 2000;14:201-6.

Sliwinska A, Blasiak J, Kasznicki J, Drzewoski J. In vitro effect of gliclazide on DNA damage and repair in patients with type 2 diabetes mellitus (T2DM). Chem Biol Interact 2008;173:159-65.

Signorini AM, Fondelli C, Renzoni E, Puccetti C, Gragnoli G, Giorgi G. Antioxidant effects of gliclazide, glibenclamide, and metformin in patients with type 2 diabetes mellitus. Curr Ther Res Clin Exp 2002;63:411-20.

Fava D, Cassone-Faldetta M, Laurenti O, De Luca O, Ghiselli A, De Mattia G. Gliclazide improves anti-oxidant status and nitric oxide-mediated vasodilatation in type 2 diabetes. Diabet Med 2002;19:752-7.

Satyanarayana S, Kumar KE, Sekhar JR. Effect of α-lipoic acid on gliclazide-induced hypoglycemia/antihyperglycemia in normal/alloxan-induced diabetic rats. Therapy 2006;3:613-7.

Srinivasan K, Viswanad B, Asrat L, Kaul CL, Ramarao P. Combination of High fat-diet fed and low-dose streptozotocin-treated rat: A model for type 2 diabetes and pharmacological screening. Pharmacol Res 2005;52:313-20.

Portha B, Serradas P. Improvement in glucose-induced insulin secretion in diabetic rats after long-term gliclazide treatment: A comparative study using different models of non-insulin dependent diabetes mellitus induced by neonatal Streptozotocin. Am J Med 1991;90(Suppl 6A):15S-21S.

Bak JF, Pedersen O. Gliclazide and insulin action in human muscle. Diabetes Res Clin Pract 1991;14 Suppl 2:S61-4.

Hoich RI, Frank M. Insulin-potentiating action of gliclazide. Pharmacol Res Commun 1986;18:419-30.

Dachicourt N, Baibe D, Gangnerau M, Serradas P, Ravel D, Portha B. Effect of gliclazide on insulin secretion and β-cell mass in non-insulin dependent diabetic Goto-Kakisaki rats. Eur J Pharmacol 1998;361:243-51.

Couturier E. Gliclazide on long-term therapy increases response to glucose of type II diabetics. Diabetes Res Clin Pract 1985;1:343-7.

Ohnota H, Kitamura T, Kinukawa M, Hamano S, Shibata N, Miyata H, et al. A rapid and short-acting hypoglycemic agent KAD-1229 improves post-prandial hyperglycemia and diabetic complicaions in streptozotocin-induced non-insulin dependent diabetes mellitus rats. Jpn J Pharmacol 1996;71:315-23.

Tanira MOM, Furman BL. The in vivo interaction between gliclazide and glibenclamide and insulin on glucose disposal in the rat. Pharmacol Res 1999;39:349-56.

Marathe PA, Parekar RP, Shinde SP, Rege NN. A split dose regimen of Streptozotocin to induce diabetes in neonatal rat model. Indian J Pharmacol 2006;38:432-3.

Maritim AC, Sanders RA, Watkins III JB. Diabetes, oxidative stress, and antioxidants: A review. J Biochem Mol Toxicol 2003;17:24-38.

Schafer A, Alp NJ, Cai S, Lygate CA, Neubauer S, Eigenthaler M, et al. Reduced vascular NO bioavailability in diabetes increases platelet activation in vivo. Arterioscler Thromb Vasc Biol 2004;24:1720-6.

Scott NA, Jennings PE, Brown J, Belch JJF. Gliclazide: A general free radical scavenger. Eur J Pharmacol 1991;208:175-7.

Vallejo S, Angulo J, Peiro C, Sanchez-Ferrer A, Cercas E, Llergo JL, et al. Prevention of endothelial dysfunction in streptozotocin-induced diabetic rats by gliclazide treatment. J Diabetes Complications 2000;14:224-33.

Sikora A, Blasiak J, Drzewoski J. Gliclazide-Oral hypoglycemic drug with pleiotropic mechanism of action. Diabetologia Doświadczalna i Kliniczna 2006;6:1-5.

Pal S. Estimation of CKMB from RIQAS control serum at 37 degree celsius. Indian J Clin Biochem 2002;17:88-90.

Takada J, Machado MA, Peres SB, Brito LC, Borges-Silva CN, Costa CEM, et al. Neonatal streptozotocin-induced diabetes mellitus: A model of insulin resistance associated with loss of adipose mass. Metabolism 2007;56:977-84.