IJBCP International Journal of Basic & Clinical Pharmacology

doi: 10.5455/2319-2003.ijbcp20130803

Review Article

The emerging therapy with probiotics in the management of inflammatory bowel disease: current status

Rajiv Kumar*, Jagjit Singh

ABSTRACT

Department of Pharmacology, Government Medical College & Hospital, Chandigarh-160030, India

Received: 27 May 2013 Accepted: 14 June 2013

*Correspondence to: Dr. Rajiv Kumar,

Email: drrajiv.08@gmail.com

© 2013 Kumar R et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Inflammatory Bowel Disease (IBD) comprises Ulcerative Colitis (UC) and Crohn's Disease (CD) with unknown aetiology. Most of the drugs used to treat IBD as standard treatment produce adverse effects during long term therapy. Evidence has suggested a role of intestinal microbiota in IBD. The use of probiotics and prebiotics is the natural approach to treat IBD. The objective of this article was to review the studies on probiotics that cover the therapeutic status in Inflammatory Bowel Disease. Appraisal of published articles from peer reviewed journals, search from PubMed and Wiley Blackwell website for English language publications using defined key words according to disease type. Studies have shown that probiotic agents play an important role in IBD and these are VSL#3, Bifido-ferminted milk, Escherichia coli Nissle 1917, Saccharomyces boulardi and "BIO-THREE for inducing remission in patients with active UC, for preventing relapses in inactive UC patients and also in UC patients with ileo-anal pouch anastomosis. Lactobacilllus rhamnosus GG and Lactobacilllus johnsonii LA1 can prevent endoscopic recurrences in patients with inactive CD. Probiotic intervention study designs in IBD patients searched were RCT vs Placebo / RCT vs standard treatment . Studies - with uncontrolled design, - with prebiotics intervention and with helminths were also searched. There is a promising role of probiotics and prebiotics in chronic mucosal inflammation that occurs in Inflammatory Bowel Disease. Sufficient evidence to support the role of probiotics in CD are not available. Well designed RCT studies based on intention -to- treat analyses are required.

Keywords: Probiotics, Inflammatory Bowel Disease, Ulcerative Colitis, Crohn's Disease

INTRODUCTION

Inflammatory Bowel Disease (IBD) - chronic relapsing inflammatory disorder of GIT, Comprises - ulcerative colitis (UC) and crohn's disease (CD) with heterogenic clinical presentation, aetiology is not clear. Ulcerative colitis (UC) involve rectum and extend proximally in to colon and may involve small intestine, UC is characterized by continuous superficial mucosal inflammation limited to colon. Crohn's disease (CD) involve segment of both small and large intestine with transmular involvement leading to stricture and bowel obstruction, and is frequent in ileum and colon, but can affect any portion of gut, associated with intestinal granuloma and complicated by stricture and fistula.^{1,2} Complex interplay of genetic, immunological, microbiological, environmental factor, and psychic factor are known to play a role. An antigen initiate

the inflammatory process leading to cascade of proinflammatory events and proinflammatory mediator are cytokines like TNF - α and free radicals. The aim of the treatment is to provide clinical remission and endoscopic remission is the secondary goal. Standard medical therapy includes corticosteroids in the acute phase, mesalazine and immunomodulators to maintain remission and biological agent for refractory and for severe cases. Most of the drugs used to treat IBD as standard treatment produce adverse effects during long term therapy, such as leukopenia, liver function abnormalities because of non specific suppression of immune system can develop opportunistic infections except mesalazine. 1-3) Increase risk of lymphoma with thiopurine, TNF - a blocking agents.^{4,5} Body of evidence suggested a role of enteric microbial flora (intestinal microbiota) in inducing and maintaining

intestinal inflammation with gut immune system in patients with Inflammatory Bowel Disease. ^{6,7}

A safer therapeutic alternative is offered by probiotics with or without addition of prebiotics a natural approach to IBD treatment. The yeast saccharomyces boulardii with mesalazine has been shown to maintain remission of inactive crohn's disease more effectively than mesalazine alone. VSL#3 a probiotic mixture i.e. consisting of four strains of Lactobacillus (L Casei, L Plantarum, L acidophilus and L delbrueckii subsp. Bulgaricus), three strains of Biofidobacterium (B llongum, B brave and B infants) and one strain of Streptococcus (S salivarius subsp. Thermophilus) has been shown to prevent recurrence of pouchitis in several clinical trial, but has provided disappointing results in experimental model.

Hence the observation carried out in experimental models does not necessarily predict same in clinical trials. There is the potential role of probiotics with or without addition of prebiotics in IBD. ^{9,10}

Studies were reviewed on probiotics that cover the therapeutic status in Inflammatory Bowel Disease. Search Strategies was the appraisal of published articles from peer reviewed journals, search from PubMed and Wiley Blackwell website for English language publications using defined key words according to disease type.

NORMAL INTESTINAL MICROBIOTA

Sterile GIT at birth rapidly colonized by successive waves of microorganism, comprising. 13-14 bacteria and stabilizes at the time of weaning. 11,12 Human intestinal microbial composition present in three clusters or Enterotypes and are Bacteroides, Prevotella, and Ruminococcus. 13 The denisity and diversity increases from stomach to colon, high interindividual diversity and microbiota is dominated by the phyla Firmicutes and Bacteroidetes. 12,14,15

Production of short chain fatty acid (SCFAs) i.e. acetate propionate and butyrate by saccharolytic bacterial fermentation of nondigestable carbohydrate. SCFAs-are-energy source for intestinal epithelial cell - affect cell proliferation, differentiation, mucus secretion and barrier function, and provide antiinflammatory and anti-oxidant function. ^{7,13,16}

Inflammatory Bowel Disease and Changes that occur in intestinal microbiota

Studies have suggested that intestinal microbiota changes, mucosal bacterial counts are higher in IBD patients. 17,18 Antibiotic showed a significant benefit over placebo for inducing remission in CD and UC. 19 Fewer fremicutes was found and low bacterial count for Faecalibacterium *Prausnitzll* 20-23 and bifidobacteria, 24,25 SCFAs production reduced. Faecal microbiota less diverse. 26,27 Diversity of bacteroidetes phylum also

reduced.¹⁵ Increase of enterobacteriaceae, and E. coli^{22,25,28}, decrease faecal concentration of butyrate in UC, ^{12,29} and significant decreases of the transcriptional activity of the mucosa associated microbiota –IBD.²¹ Molecular approaches like FISH, PCR and pyrosequencing have identified a microbial disbiosis in IBD patients.^{26,27} CARDIS -1st CD gene identified.^{30,31}

Other changes that occur in IBD

Loss of oral tolerance to commensal bacteria in IBD, increase response to commensal bacteria – contributing the intestinal inflammation. Increase mucosal infiltration of CD4 - lymphocytes, dysfunctional dendrite cells, dysregulated macrophage induced immune response and abnormalities in regulatory pathway have been reported, 32,33 and in CD increase production of the per (Th)-l cytokines and the Th17 cytokine interleukin (IL)-17 have been observed. IL-4, IL-5 and increase in IL-17 have been observed. IL-4, IL-5 and increase in IL-17 have been observed. In both UC and CD reduced number of regulatory T cell have been observed.

Reduced number of regulatory T cell, and genetic susceptibility observed in IBD will contribute to the loss of oral tolerance.³⁶

PROBIOTICS

Probiotics are "live microorganisms, which when administered in adequate amount confer a health benefit to the host". At the start of the 20th century, Russian Nobel prize winner Elie Metchnikoff, 39 a scientist at the Pasteur Institute, was the first to conceptualize "Probiotics", and the term coined in 1965 by Lilly and Stillwell. $^{(40)}$ Criteria: They should be of human origin, must be safe, genetically stable and able to survive passage through the GIT (* low pH, bile and digestive enzymes), different bacterial strain can have different effects, they may act complimentarily or even synergistically.⁵ Probiotics are bacteria, these are-lactic acid bacteria, Lactobacillus acidophilus, L. casei, L. lactis, L. helviticus, L. salivarius, L. plantrum, L. bulgaricus, L. rhamnosus, L. johnsonii, L. reuteri, L. fermentum, L. delbrueckii, Streptococcus thermophilus, Enterococcus faecium, E. faecalis, Bifidobacterium bifidum, B. breve, B. longum and Saccharomyces boulardii are commonly used probiotics. 41

The probiotics when attached to the wall of intestine increase the number of beneficial bacteria and fight against harmful bacteria thus maintaining a balance between the beneficial and harmful bacteria by following mechanisms: Production of inhibitory substances, Blocking of adhesion sites by competitive inhibition, Competition for nutrients otherwise consumed by pathogenic microorganisms, Stimulation of immunity. 45,46

Prebiotics are indigestible carbohydrates, which stimulate the growth of particular species of the microflora of the host, resulting in an ameliorated enteric function. These nondigestible food constituents act primarily by increasing the population of certain bacteria and thus quantitatively altering the microflora.41 When reaching the colon, they are fermented by anaerobic bacteria, producing short-chain fatty acid (SCFA) and gas (CO2 and H₂). As a result, intraluminal pH drops, ⁴² favouring the increase of Bifidobacteria, Lactobacilli and nonpathogenic E. coli and decreasing Bacterodaceae. These are Lactulose, Germinated barley foodstuff, Fructo-oligosaccharides, and Goat's oligosaccharides.41

Synbiotics are substances containing both probiotics and prebiotics, ⁴¹ synbiotics introduced as "pharmabiotics" by Shanahan. ⁴³

PROBIOTIC INTERVENTION STUDIES RETRIEVED IN INFLAMMATORY BOWEL DISEASE WERE:

- A- Probiotic intervention studies retrieved in *adult ulcerative colitis patients with active disease (Table 1)*. 56-66
- B- Probiotic intervention studies retrieved in *adult* patients with ulcerative colitis in remission (Table 2). 67-73
- C- Probiotic intervention studies retrieved in adult ulcerative colitis patients with an ileo-anal pouch anastomosis (Table 3). 74-77
- D- Probiotic intervention studies retrieved in *adult* patients with Crohn's disease (Table 4).⁷⁸⁻⁸¹

Table 1: Probiotic intervention studies retrieved in adult ulcerative colitis patients with active disease.

Intervention (daily dose*)	Disease activity	Design	Clinical outcome
Saccharomyces boulardii (750mg) + mesalazine (3g)	Mild to moderate active	Uncontrolled 4wk (N=25)	68% in remission, decreased clinical activity-significant ⁵⁶
Bifido-fermented milk [Bifidobacterium breve, Bifidobacterium bifidum and Lactobacillus acidophilus] (10x10 ⁹) Vs PL	Mild to moderately active	RCT Vs no additive tx, 12mo (N=21)	Significant relapse rate, & no differences in colonoscopic findings ^{57,58}
VSL # 3 (9x10 ¹¹) + balsalazide (2.25g) Vs balsalazide (4.5g) Vs Mesalazine (2.4g)	Moderately active	RCT Vs standard tx, 8wk (N=90)	Significant remission rate, & faster remission induction ⁵⁹
VSL # 3 (3.6 x 10 ¹²)	Moderately active	Uncontrolled, 6wk (N=34)	53% entered remission, 77% decreased >3 points in clinical activity index ⁶⁰
BIO-THREE (Streptococcus faecalis 18mg, Clostridium butyricum 90mg. Bacillus mesentericus 90mg) [n=10; also 100g dietary fibre daily]	Mild to moderately refractory active	Uncontrolled, 4wk (N=20)	45% in remission. ⁶¹
VSL#3 (1.8x10 ¹²)	UC pts (active+inactive)	Uncontrolled, 5wk (N=15)	Decrease in clinical disease activity. 62
Bifidobacterium longum Bb536 (2-3x10 ¹¹)	Active	Uncontrolled, 24wk (N=14)	67% reached remission. ⁶³
VSL#3 (3.6x10 ¹²) vs PL	Mild to moderately active	RCT vs PL, 12wk (N=147)	>50% improved disease activity at wk 6, remission at wk 12- significant ⁶⁴
Escherichia coli Nissle 1917 enema (4x10 ⁹) Vs (2x10 ⁹) Vs (10 ⁹) Vs PL.	Mild to moderately active	RCT Vs PL, 8wk (N=90)	Significant remission rates as per analysis ⁶⁵
5-ASA (2.4g) Vs 5-ASA + Lactobacillus casei (1.6 x 10 ⁹) orally Vs 5-ASA + L. casei (1.6 x 10 ⁹) rectally.	Mild active	RCT Vs standard tx, 8wk (N=26)	Improved clinical activity in 5-ASA group. Improved histology in both L. casei groups. 66

Daily dose* in CFU=colony-forming units; pts=patients; PL=placebo; tx=treatment; mo=months; N=number of patients; RCT=randomized controlled trial; UC= ulcerative colitis; 5-ASA=5- aminosalicylic acid

Table 2: Probiotic intervention studies retrieved in adult patients with ulcerative colitis in remission.

Intervention (daily dose*)	Disease activity	Design	Clinical outcome
Escherichia coli Nissle 1917 enema (50x10 ⁹) Vs mesalazine (3x500mg).	Inactive	RCT Vs standard tx, 12wk (N=103)	Similar relapse rate, NS. 67
E.Coli Nissle 1917 (50x10 ⁹) Vs mesalazine (3 x 400mg)	Inactive (after remission induction)	RCT Vs standard tx, 12mo (N=83)	Similar relapse rate, NS. ⁶⁸
VSL # 3 (3x10 ¹²)	Inactive (intolerant / allergic to 5- ASA)	Uncontrolled 12mo (N=20)	75% maintained remission. ⁶⁹
Bifid triple viable capsule (1.26g) vs PL	Inactive after inducing remission	RCT vs PL, 8wk (N=30)	Significant relapse rate. ⁷⁰
Lactobacillus rhamnosus GG (18x10 ⁹) vs mesalazine (2400mg) vs L.GG (18x10 ⁹) + mesalazine (2400mg)	Inactive	RCT vs standard tx, 12mo (N=187)	Similar relapse rate, NS. No difference in clinical, endoscopic and histological scores. ⁷¹
Saccharomyces boulardii (500mg) + rifaximin (400mg)	Inactive (mesalamine intolerant)	Uncontrolled, 3mo (N=6)	Maintained remission based on clinical activity. ⁷²
Lactobacillus acidophilus (La-5) + Bifidobacterium animalis lactis [Bb-12] 91.5x10 ¹¹) vs Pl	Inactive	RCT vs PL, 52wk (N=32)	Maintenance remission. ⁷³

Daily dose* in CFU=colony-forming units; PL=placebo; tx=treatment; mo=months; N=number of patients; NS=not significant; RCT=randomized controlled trial; 5-ASA=5- aminosalicylic acid.

Table 3: Probiotic intervention studies retrieved in adult ulcerative colitis patients with an ileo-anal pouch anastomosis.

Intervention (daily dose*)	Disease activity	Design	Clinical outcome
Escherichia coli Nissle 1917 (2.5-5 x 10 ¹⁰)	Active pouchitis	Uncontrolled, 315/56d (N=2)	Both in remission from day 50 and 5, respectively. 74
VSL # 3 (36 x 10 ¹¹)	Mild to active pouchitis	Uncontrolled 4wk (N=23)	69% in remission, Decreased PDAI. ⁷⁵
VSL # 3 (18 x 10 ¹¹) vs PL	After induction remission by antibiotics	RCT vs PL, 9mo (N=40)	Significant relapse rate. ⁷⁶
Lactobacillus rhamnosus GG (2-4 x 10 ¹⁰) vs PL	With history of pouchitis (subgroup had pouchitis)	RCT vs PL, 3mo (N=20)	No change in PDAI scores between groups. ⁷⁷

 $Daily\ dose*\ in\ CFU=colony-forming\ units;\ PL=placebo;\ mo=months;\ N=number\ of\ patients;\ RCT=randomized\ controlled\ trial;\ PDAI=Pouch\ Disease\ Activity\ Index.$

Table 4: Probiotic intervention studies retrieved in adult patients with Crohn's disease.

Intervention (daily dose*)	Disease activity	Design	Clinical outcome
Prednislon + Escherichia coli Nissle 1917 (5x10 ¹⁰) vs prednisolon + PL	Active, all colon	RCT vs PL, 12mo (N=23)	Entered in remission, & relapse rate NS. ⁷⁸
Lactobacillus acidophilus, Bifidobacterium, Lactobacillus casei + Streptococcus salivarius subsp. Thermophilus (8x10 ⁹)	Active, disease locations unknown	Uncontrolled (case reports), 7-12mo (N=3)	Maintained remission but 1 wk abdominal pain (after 7 and 8mo) in 2 of 3 pts. ⁷⁹
Saccharomyces boulardii (1g) + mesalazine (2g) vs mesalazine (3g)	33-Inactive, (9 ileum, 1 colon, 23 ileum + colon)	RCT vs standard therapy, 6mo (N=33)	Significant relapse rate. ⁸⁰
Lactobacillus rhamnosus GG (12 x 10 ⁹) vs PL	45-Inactive (10 d after curative resection, 35 ileum, 3 colon, 7 ileum + colon)	RCT vs PL, 12mo (N=45)	Clinical relapse & had endoscopic recurrence of those in remission. ⁸¹

Daily dose* in CFU=colony-forming units; PL=placebo; mo=months; N=number of patients; RCT=randomized controlled trial;

Role of Helminths in Inflammatory Bowel Disease:

There is evidence from studies that Inflammatory Bowel Disease (IBD) is much less common in countries with poor sanitation and low hygiene levels, where helminth infections are common, in comparison with Western countries.⁵⁴ It has thus been assumed that helminths may lead to the prevention of IBD by some unknown mechanism. Studies have revealed, the use of helminths such as Trichuris *suis* for the treatment of IBD patients,⁵⁵ and helminths are in clinical trial.

DISCUSSION AND CONCLUSIONS

Studies have revealed that probiotics affect the composition of the microbial ecosystem by competition of nutrients and adhesion sites, by the production of antimicrobial substances and / or via cell-cell communication. Probiotics affect host immune system by interaction of bacterial products, cell wall components or DNA with epithelial and gut-associated immune cell. There is evidence from studies that probiotics causes changes in cytokine production, modulation in dendritic cell function, and increase of natural killer cell activity, and induction of regulatory T cell and defensins. 44,46,47

Probiotics contribute to SCFAs, butyrate / or affect barrier function by induction of mucin secretion, by enhancement of tight junction expression and functioning, 48,49 also probiotics decreases epithelial cell apoptosis.

There is evidence from studies that intestinal microbiota play a role not only in the chronic mucosal inflammation in IBD but also in Irritable Bowel Syndromes (IBS), Obesity, and the Metabolic Syndrome. ^{2,50-53}

The main rationale for probiotics interventional studies is the manipulation of the indigenous intestinal microbiota composition and activity, the immune system and host barrier function. 44,46,47 Studies have shown that probiotic agents play an important role in IBD, These are VSL#3, Bifido- ferminted milk, Escherichia coli Nissle 1917, Saccharomyces boulardii and "BIO-THREE for inducing remission in patients with active UC, for preventing relapses in inactive UC patients and also in UC patients with ileo-anal pouch anastomosis. Lactobacillllus rhamnosus GG and Lactobacillllus johnsonii LA1 can prevent endos -copic recurrences in patients with inactive CD. Probiotic intervention study designs in IBD patients searched were RCT vs Placebo / RCT vs standard treatment.

Studies with uncontrolled design, with prebiotics intervention and with helminths were also searched. There is a promising role of probiotics and prebiotics in chronic mucosal inflammation that occurs in Inflammatory Bowel Disease. Sufficient evidence to support the role of probiotics in CD are not available. Well designed RCT studies based on intention -to- treat analyses are required.

Funding: No funding sources Conflict of interest: None declared Ethical approval: Not required

REFERENCES

- Bengmark S. Bioecological control of inflammatory bowel disease. Clin Nutr 2007;26:169-81.
- Talley NJ, Abreu MT, Achkar JP et al. An evidencebased systematic review on medical therapies for inflammatory bowel disease. Am J Gastroenterol 2011 Apr;106 Suppl.1:S2-25;Quiz 56.
- Dignass A, Van Assche, Lindsay JO et al. The second European evidence-based consensus on the diagnosis and management of Crohn's disease: current management. J Crohn's Colitis 2010 Feb;4(1):28-62.
- 4. Herrinton LJ, Weng X, Liu L et al. Role of thiopurine and anti-TNF therapy in lymphoma in inflammatory bowel disease. Am J Gastroentrol 2011 Dec;106(12):2146-53.
- Timmerman HM, Koning CJ, Mulder L et al. Monostrain, multistrain and multispecies probiotics: a comparison of functionality and efficacy. Int Food Microbiol 2004 Nov 15;96 (3):219-33.
- 6. Guslandi M.Antibiotics for inflammatory bowel disease: do they work? Eur J Gastroenterol Hepatol 2005; 17: 145-7.
- 7. Thompson-Chagoyan OC, Maldonado J, Gill A. Aetiology of inflammatory bowel disease (IBD): role of intestinal microbiota and gut-associated lymphoid tissue immune response. Clin Nutr 2005 Jun; 24 (3):339-52.
- 8. Guslandi M, et al. Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig Dis Sci 2000 Jul; 45 (7): 1462-4.
- Damaskos D, Kolios G. Probiotics and prebiotics in inflammatory bowel disease: microflora 'on the scope'. Br J Clin Pharmacol 2008; 65:453-67.
- Asakura H, Suzuki K, Honma T. Recent advances in basic and clinical aspects of inflammatory bowel disease; which steps in the mucosal inflammation should we block for the treatment of inflammatory bowel disease? World J Gastroenterol 2007;13:2145-9.
- 11. Zoetendal EG, Akkermans ADL, Akkermans-van Vliet WM et al. The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 2001;13:129-34.
- 12. Takaishi H, Matsuki T et al. Imbalance in intestinal microflora constitution could be involved in the pathogenesis of inflammatory bowel disease. Int J Med Microbiol 2008 Jul;298 (5-6):463-72.
- 13. Arumugam M, Raes J, Pelletier E et al. Enterotypes of the human gut microbiome. Nature 2001 May 12;473 (7346):174-80.
- 14. Eckburg PB, Bik EM, Bernstein CN et al. Diversity of the human intestinal microbial flora. Science 2005 Jun 10;308(5728):1635-8.
- Frank DN, St Amand AL, Feldman RA et al. Molecular-phylogenetic characterization of microbial community imbalances in human inflammatory bowel disease. Proc Natl Acad Sci USA 2007 Aug 21; 104(34): 13780-5.

- 16. Hamer HM, Jonkers D, Venema K et al. Review article: the role of butyrate on colonic function. Aliment Pharmacol Ther 2008 Jan 15;27(2):104-19.
- 17. Swidsinski A, Ladhoff A, Pernthaler A et al. Muscosal flora in inflammatory bowel disease. Gastroenterology 2002;122(1):44-54.
- 18. Schultsz C, Ven Den Berg, Ten Kate FW et al. The intestinal mucus layer from patients with inflammatory bowel disease harbors high numbers of bacterial compared with controls. Gastroenterology 1999;117(5):1089-97.
- 19. Khan KJ, Ullman TA, Ford AC et al. antibiotic therapy in inflammatory bowel disease: a systematic review and meta-analysis. Am J Gastroentrol 2011 Apr;106(4):661-73.
- 20. Manichanh C, Riggotier-Gois, Bonnaud E et al. Reduced diversity of faecal microbiota in Crohn's disease revealed by a metagenomic approach. Gut 2006 Feb;55 (2):205-11.
- 21. Rehman A, Lepage P, Nolte A et al. Transcriptional activity of the dominant gut mucosal microbiota in chronic inflammatory bowel disease patients. J Med Microbiol 2010 Sep;59 (Pt 9):1114-22.
- 22. Walker AW, Sanderson JD, Churcher C et al. High throughput clone library analysis of the mucosa-associated microbiota reveals dysbiosis and differences between inflamed and non-inflamed regions of the intestine in inflammatory bowel disease. BMC Microbiol 2011 Jan 10;11:7.
- 23. Sokol H, Seksik P, Furet JP et al. Low counts of Faecali-bacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 2009 Aug;15(8):1183-9.
- 24. Kleessen B, Kroesen AJ, Bhur J et al. Mucosal and invading bacteria in patients with inflammatory bowel disease compared with controls. Scand J Gastroentrol 2002 Sep;37(9):1034-41.
- Mylonaki M, Rayment NB, Rampton DS et al. Molecular characterization of rectal mucosaassociated bacterial flora in inflammatory bowel disease. Inflamm Bowl Dis 2005 May;11(5):481-7.
- Dicksved J, Halfvarson J, Rosenquist M et al. Molecular analysis of the gut microbiota of indentical twins with Crohn's disease. Isme J 2008 Jul;2(7):716-27.
- 27. Martinez C, Antolin M, Santos J et al. Unstable composition of the fecal microbiota in ulcerative colitis during clinical remission. Am J Gastroenterol 2008 Mar;103(3):643-8.
- 28. Thomazini CM, Rodrigues MA, Rodrigues MA et al. High prevalence of aggregative adherent Escherichia coli strains in the mucosa-associated microbiota of patients with inflammatory bowel disease. Int J Med Microbiol 2011 Aug;301(6):475-9.
- 29. Verina P, Hauck W, Hauck W et al. Organic anions and the diagghea of inflammatory bowel disease. Dig Dis Sci 1988 Nov;33(11):1353-8.
- Hugot JP, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn's disease. Nature 2001 May 31;411 (6837):599-603.

- 31. Cho JH, Brant SR. Recent insights into the genetics of inflammatory bowel disease. Gastroentrology 2011 May;140(6):1704-12.
- 32. Abraham C, Medzhitov R. Interactions between the host innate immune system and microbes in inflammatory bowel disease. Gastroenterology 2011 May;140(6):1729-37.
- 33. Danese S. Immune and nonimmune components orchestrate the pathogenesis of inflammatory bowel disease. Am J Physiol Gastrointest. Liver Physiol 2011 May:300(5):G716-22.
- 34. Abraham C, Cho JH. IL-23 and autoimmunity: new insights into the pathogenesis of inflammatory bowel disease. Annu Rev Med 2009;60:97-110.
- 35. Korzenik JR, Podolsky DK. Evolving knowledge and therapy of inflammatory bowel disease. Nat Rev Drug Discov 2006 Mar;5(3):197-209.
- 36. Less CW, Parkes M, Parkes M et al. New IBD genetics: common pathways with other diseases. Gut 2011 Feb 7;60(12):1739-53.
- 37. Food and Agriculture Organization of the United Nations, WHO. Joint FAO/WHO expert consultation on evaluation of health nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. Cordoba:2001 Oct(online).
- 38. Joint Food and Agriculture Organization of the United Nations/World Health Organization Working Group report on drafting guidelines for the evaluation of probiotics in food, London, Ontario, Canada, April 30 and May, 2002.
- 39. Metchnikoff E. The prolongation of life. Optimistic studies. London: Butterworth-Heinemann, 1907.
- 40. Lilly DM, Stillwell RH. Probiotics: Growth promoting substances produced by microorganisms. Science 1965; 147:747-8.
- 41. Bengmark S. Pre-, Pro- and synbiotics. Curr Opin Clin Nutr Metab Care 2001;4: 571-9.
- 42. Govers MJ et al. Wheat bran affects the site of fermentation of resistant starch and luminal indexes related to colon cancer risk: a study in pigs. GUT; 45: 840-7.
- 43. Shanahan F. Physiological basis for noval drug therapies used to treat the inflammatory bowel diseases. Pathophysiological basis and prospects for probiotic therapy in inflammatory bowel diseases. Am J Physiol Gstrointest Physiol 2005; 288: G417-21.
- 44. Lebeer S, Vanderleyden J, De Keersmaecker SC et al. Genes and molecules of lactobacilli supporting probiotic action. Microbial Mol Biol Rev 2008 Dec;72(4):728-64.
- 45. Sherman PM, Ossa JC, Johnson Henry K. Unraveling mechanisms of action of probiotics. Nutr Clin Pract 2009 Feb-Mar;24(1):10-4.
- 46. Oelschlaeger TA. Mechanisms of probiotic actions: a review. Int J Med Microbiol 2010 Jan;300(1): 57-62.
- 47. Karczewski J, Konings I, Troost FJ et al. Regulation of human epithelial tight junction proteins by Lactobacillus plantarum in vivo and protective

- effects on the epithelial barrier. Am J Physiol Gastrointest Liver Physiol 2010 Jun;298(6):G851-9.
- 48. Caballero-Franco C, De Simone C, Keller K et al. The VSL#3 probiotic formula induces mucin gene expression and secretion in colonic epithelial cells. Am J Physiol Gastrointest Livel Physiol 2007 Jan;292(1):G315-22.
- 49. Ukena SN, Singh A, Dringenberg U et al. Probiotic Escherichia coli Nissle 1917 inhibits leaky gut by enhancing mucosal integrity. PLoS One 2007;2(12):el308.
- Quigley EM. Gut microbiota and the role of probiotics in therapy. Curr Opin Pharmacol 2011 Oct 11:11(6):593-603.
- 51. Tilg H. Obesity, metabolic syndrome, and microbiota: multiple interactions. J Clin Gastroenterol 2010 Spe;44 Suppl. 1:S16-8.
- 52. Thia KT et al. An update on the epidemiology of inflammatory bowel disease in Asia. Am J Gastroenterol 2008 Dec;103(12):3167-82.
- 53. Kawada M, Arihiro A, Mizoguchi E. Insights from advances in research of chemically induced experimental modles of human inflammatory bowel disease. World J Gastroenterol 2007 Nov 14;13(42): 5581-93
- 54. Fiasse R, Latinne D. Intestinal helmonths: a clue explaining the low incidence of inflammatory bowel diseases in Subsaharan Africa? Potential benefits and hazards of helminth therapy. Acta Gastroenterol Belg 2006;69:418-22.
- 55. Reddy A, Fried B. The use of Trichuris suis and other helminth therapies to treat Crohn's disease. Parasitol Res 2007;100:921-7.
- Guslandi M, Giollo P, Testoni PA. A pilot trial of Saccharomyces boulardii in ulcerative colitis. Eur J Gastroenterol Hepatol 2003 Jun; 15(6):697-8.
- 57. Ishikawa H, Akedo I, Umesaki Y et al. Randomized controlled trial of the effect of bifidobacteria fermented milk on ulcerative colitis. J Am Coll Nutr 2003 Feb;22 (1):56-63.
- 58. Kato K, Mizuno S, Umesaki Y et al. Randomized placebo-controlled trial assessing the effect of bifidobacteria-fermented milk on active ulcerative colitis. Aliment Pharmacol Ther 2004 Nov 15;20(10):1133-41.
- 59. Tursi A, Brandimarte G, Giorgetti GM et al. Low-dole balsalazide plus a high-potency probiotic preparation is more effective than balsalazide alone or mesalazine in the treatment of acute mild-to-moderate ulcerative colitis. Med Sci Monti 2004 Nov;10(11):PI126-31.
- 60. Bibiloni R, Fedorak RN, Tannock GW et al. VSL#3 probiotic-mixture induces remission in patients with active ulcerative colitis. Am J Gastroenterol 2005 Jul;100 (7):1539-46.
- 61. Tsuda Y, Yoshimatsu Y, Aoki H et al. Clinical effectiveness of probiotics therapy (BIO-THREE) in patients with ulcerative colitis refractory to conventional therapy. Scand J Gastroenterol 2007 Nov;42(11):1306-11.

- 62. Soo I, Madsen KL, Tejpar Q et al. VSL#3 probiotic upregulates intestinal mucosal alkaline sphingomyelinase and reduces inflammation. Can J Gastroenterol 2008 Mar;22(3):237-42.
- 63. Takeda Y, Nakase H, Namba K et al. Upregulation of T-bet and tight junction molecules by Bifidobactrium longum improves colonic inflammation of ulcerative colitis. Inflamm Bowel Dis 2009 Nov;15(11):1617-8.
- 64. Sood A, Midha V, Makharia GK et al. The probiotic preparation, VSL#3 induces remission in patients with mild-to-moderately active ulcerative colitis. Clin Gastroenterol Hepatol 2009 Nov;7(11):1202-9el.
- 65. Tursi A, Brandimarte G, Papa A et al. Treatment of relapsing mild-to-moderate ulcerative colitis with the probiotic VSL#3 as adjunctive to a standard pharmaceutical treatment: a double-blind, randomized, placebo-controlled study. Am J Gastroenterol 2010 Oct;105 (10):2218-27.
- 66. D'Inca R, Barollo M, Scarpa M et al. Rectal administration of Lactobacillus casei DG modifies flora composition and Toll-like receptor expression in colonic mucosa of patients with mild ulcerative colitis. Dig Dis Sci 2011 Apr;56(4):1178-87.
- 67. Kruis W, Schutz E, Fric P et al. Double-blind comparison of an oral Escherichia coli preparation and mesalazine in maintaining remission of ulcerative colitis. Aliment Pharmacol Ther 1997 Oct;11(5):853-8.
- 68. Rembacken BJ, Snelling AM, Hawkey PM et al. Nonpathogenic Escherichia coli versus mesalazine for the treatment of ulcerative colitis: a randomized trial. Lancet 1999;354(9179):635-9.
- 69. Venturi A, Gionchetti P, Rizzello F et al. Impact on the composition of the faecal flora by a new probiotic preparation: preliminary data on maintenance treatment of patients with ulcerative colitis. Aliment Pharmacol Ther 1999;13(8):1103-8.
- 70. Cui HH, Chen CL, Wang JD et al. Effects of probiotic on intestinal mucosa of patients with ulcerative colitis. World J Gastroenterol 2004 May 15:10(10):1521-5.
- 71. Zocco MA, dal Verme LZ, Cremonini F et al. Efficacy of lactobacillus GG in maintaining

- remission of ulcerative colitis. Aliment Pharmacol Ther 2006 Jun;23(11):1567-74.
- 72. Guslandi M. Saccharomyces boulardii plus rifaximin in mesalamine-intolerant ulcerative colitis. J Clin Gastroenterol 2010 May-Jun;44(5):385.
- 73. Wildt S, Nordgaard I, Hansen U et al. A randomized double-blind placebo-controlled trial with Lactobacillus acidophilus La-5 and Bifidobacterium animals subsp. lactis BB-12 for maintainance of remission in ulcerative colitis. J Crohns Colitis 2011 Apr;5(2):115-21.
- 74. Kuzela L, Kascak M, Vavrecka A. Induction and maintenance of remission with nonpathogenic Escherichia coli in patients with pouchitis. Am J Gastroenterol 2001 Nov; 96(11):3218-9.
- 75. Gionchetti P, et al. High- dose probiotics for the treatment of active pouchitis. Dis Colon Rectum 2007 Dec;50 (12):2075-82; discussion 82-4.
- 76. Gionchetti P, et al. Oral bacteriotherapy as maintenance treatment in patients with chronic pouchitis: a double blind placebo-controlled trial. Gastroenterology 2000 Aug; 119 (2):305-9.
- 77. Kuisma J, et al. Effects of Lactobacillus rhamnosus GG on ileal pouch inflammation and microbial flora . Aliment Pharmacol Ther 2003 Feb 15; 17 (4): 509-15.
- 78. Malchow HA. Crohn's disease and Escherichia coli: a new approach in therapy to maintain remission of colonic Crohn's disease? J Clin Gastroenterol 1997;25(4):653-8.
- 79. Doman DB, et al. "Ecologic niche" therapy for Crohn's disease with adjunctive rifaximin antibiotic treatment followed by Flora-Q probiotic maintenance therapy. Am J Gastroenterol 2008 Jan;103(1)251-2.
- 80. Guslandi M, et al. Saccharomyces boulardii in maintenance treatment of Crohn's disease. Dig Dis Sci 2000 Jul;45(7):1462-4.
- 81. Prantera C, et al. Ineffectiveness of probiotics in preventing recurrence after curative resection for :Crohn's disease: a randomised controlled trial with Lactobacillus GG. Gut 2002;51(3):405-9.

doi:10.5455/2319-2003.ijbcp20130803

Cite this article as: Kumar R, Singh J. The emerging therapy with probiotics in the management of inflammatory bowel disease: current status. Int J Basic Clin Pharmacol 2013;2:360-7.